Abstract:Articulated multi-axle vehicles are interesting from a control-theoretic perspective due to their peculiar kinematic offtracking characteristics, instability modes, and singularities. Holonomic and nonholonomic constraints affecting the kinematic behavior is investigated in order to develop control-oriented kinematic models representative of these peculiarities. Then, the structure of these constraints is exploited to develop an iterative algorithm to symbolically derive yaw-plane kinematic models of generalized $n$-trailer articulated vehicles with an arbitrary number of multi-axle vehicle units. A formal proof is provided for the maximum number of kinematic controls admissible to a large-scale generalized articulated vehicle system, which leads to a generalized Ackermann steering law for $n$-trailer systems. Moreover, kinematic data collected from a test vehicle is used to validate the kinematic models and, to understand the rearward yaw rate amplification behavior of the vehicle pulling multiple simulated trailers.
Abstract:Automated driving systems face challenges in GPS-denied situations. To address this issue, kinematic dead reckoning is implemented using measurements from the steering angle, steering rate, yaw rate, and wheel speed sensors onboard the vehicle. However, dead reckoning methods suffer from drift. This paper provides an arc-length-based map matching method that uses a digital 2D map of the scenario in order to correct drift in the dead reckoning estimate. The kinematic model's prediction is used to introduce a temporal notion to the spatial information available in the map data. Results show reliable improvement in drift for all GPS-denied scenarios tested in this study. This innovative approach ensures that automated vehicles can maintain continuous and reliable navigation, significantly enhancing their safety and operational reliability in environments where GPS signals are compromised or unavailable.