Abstract:Retrieving graphs from a large corpus, that contain a subgraph isomorphic to a given query graph, is a core operation in many real-world applications. While recent multi-vector graph representations and scores based on set alignment and containment can provide accurate subgraph isomorphism tests, their use in retrieval remains limited by their need to score corpus graphs exhaustively. We introduce CORGII (Contextual Representation of Graphs for Inverted Indexing), a graph indexing framework in which, starting with a contextual dense graph representation, a differentiable discretization module computes sparse binary codes over a learned latent vocabulary. This text document-like representation allows us to leverage classic, highly optimized inverted indices, while supporting soft (vector) set containment scores. Pushing this paradigm further, we replace the classical, fixed impact weight of a `token' on a graph (such as TFIDF or BM25) with a data-driven, trainable impact weight. Finally, we explore token expansion to support multi-probing the index for smoother accuracy-efficiency tradeoffs. To our knowledge, CORGII is the first indexer of dense graph representations using discrete tokens mapping to efficient inverted lists. Extensive experiments show that CORGII provides better trade-offs between accuracy and efficiency, compared to several baselines.
Abstract:Marked temporal point processes (MTPPs) have been shown to be extremely effective in modeling continuous time event sequences (CTESs). In this work, we present adversarial attacks designed specifically for MTPP models. A key criterion for a good adversarial attack is its imperceptibility. For objects such as images or text, this is often achieved by bounding perturbation in some fixed $L_p$ norm-ball. However, similarly minimizing distance norms between two CTESs in the context of MTPPs is challenging due to their sequential nature and varying time-scales and lengths. We address this challenge by first permuting the events and then incorporating the additive noise to the arrival timestamps. However, the worst case optimization of such adversarial attacks is a hard combinatorial problem, requiring exploration across a permutation space that is factorially large in the length of the input sequence. As a result, we propose a novel differentiable scheme PERMTPP using which we can perform adversarial attacks by learning to minimize the likelihood, while minimizing the distance between two CTESs. Our experiments on four real-world datasets demonstrate the offensive and defensive capabilities, and lower inference times of PERMTPP.