Abstract:We present Match Chat, a real-time, agent-driven assistant designed to enhance the tennis fan experience by delivering instant, accurate responses to match-related queries. Match Chat integrates Generative Artificial Intelligence (GenAI) with Generative Computing (GenComp) techniques to synthesize key insights during live tennis singles matches. The system debuted at the 2025 Wimbledon Championships and the 2025 US Open, where it provided about 1 million users with seamless access to streaming and static data through natural language queries. The architecture is grounded in an Agent-Oriented Architecture (AOA) combining rule engines, predictive models, and agents to pre-process and optimize user queries before passing them to GenAI components. The Match Chat system had an answer accuracy of 92.83% with an average response time of 6.25 seconds under loads of up to 120 requests per second (RPS). Over 96.08% of all queries were guided using interactive prompt design, contributing to a user experience that prioritized clarity, responsiveness, and minimal effort. The system was designed to mask architectural complexity, offering a frictionless and intuitive interface that required no onboarding or technical familiarity. Across both Grand Slam deployments, Match Chat maintained 100% uptime and supported nearly 1 million unique users, underscoring the scalability and reliability of the platform. This work introduces key design patterns for real-time, consumer-facing AI systems that emphasize speed, precision, and usability that highlights a practical path for deploying performant agentic systems in dynamic environments.