Abstract:Manipulation surfaces control objects by actively deforming their shape rather than directly grasping them. While dense actuator arrays can generate complex deformations, they also introduce high degrees of freedom (DOF), increasing system complexity and limiting scalability. The MANTA-RAY (Manipulation with Adaptive Non-rigid Textile Actuation with Reduced Actuation densitY) platform addresses these challenges by leveraging a soft, fabric-based surface with reduced actuator density to manipulate fragile and heterogeneous objects. Previous studies focused on single-module implementations supported by four actuators, whereas the feasibility and benefits of a scalable, multi-module configuration remain unexplored. In this work, we present a distributed, modular, and scalable variant of the MANTA-RAY platform that maintains manipulation performance with a reduced actuator density. The proposed multi-module MANTA-RAY platform and control strategy employs object passing between modules and a geometric transformation driven PID controller that directly maps tilt-angle control outputs to actuator commands, eliminating the need for extensive data-driven or black-box training. We evaluate system performance in simulation across surface configurations of varying modules (3x3 and 4x4) and validate its feasibility through experiments on a physical 2x2 hardware prototype. The system successfully manipulates objects with diverse geometries, masses, and textures including fragile items such as eggs and apples as well as enabling parallel manipulation. The results demonstrate that the multi-module MANTA-RAY improves scalability and enables coordinated manipulation of multiple objects across larger areas, highlighting its potential for practical, real-world applications.
Abstract:Object manipulation in robotics faces challenges due to diverse object shapes, sizes, and fragility. Gripper-based methods offer precision and low degrees of freedom (DOF) but the gripper limits the kind of objects to grasp. On the other hand, surface-based approaches provide flexibility for handling fragile and heterogeneous objects but require numerous actuators, increasing complexity. We propose new manipulation hardware that utilizes equally spaced linear actuators placed vertically and connected by a soft surface. In this setup, object manipulation occurs on the soft surface through coordinated movements of the surrounding actuators. This approach requires fewer actuators to cover a large manipulation area, offering a cost-effective solution with a lower DOF compared to dense actuator arrays. It also effectively handles heterogeneous objects of varying shapes and weights, even when they are significantly smaller than the distance between actuators. This method is particularly suitable for managing highly fragile objects in the food industry.