Abstract:Deep learning models have shown encouraging capabilities for mapping accurately forests at medium resolution with TanDEM-X interferometric SAR data. Such models, as most of current state-of-the-art deep learning techniques in remote sensing, are trained in a fully-supervised way, which requires a large amount of labeled data for training and validation. In this work, our aim is to exploit the high-resolution capabilities of the TanDEM-X mission to map forests at 6 m. The goal is to overcome the intrinsic limitations posed by midresolution products, which affect, e.g., the detection of narrow roads within vegetated areas and the precise delineation of forested regions contours. To cope with the lack of extended reliable reference datasets at such a high resolution, we investigate self-supervised learning techniques for extracting highly informative representations from the input features, followed by a supervised training step with a significantly smaller number of reliable labels. A 1 m resolution forest/non-forest reference map over Pennsylvania, USA, allows for comparing different training approaches for the development of an effective forest mapping framework with limited labeled samples. We select the best-performing approach over this test region and apply it in a real-case forest mapping scenario over the Amazon rainforest, where only very few labeled data at high resolution are available. In this challenging scenario, the proposed self-supervised framework significantly enhances the classification accuracy with respect to fully-supervised methods, trained using the same amount of labeled data, representing an extremely promising starting point for large-scale, very high-resolution forest mapping with TanDEM-X data.
Abstract:Timely and accurate assessments of building damage are crucial for effective response and recovery in the aftermath of earthquakes. Conventional preliminary damage assessments (PDA) often rely on manual door-to-door inspections, which are not only time-consuming but also pose significant safety risks. To safely expedite the PDA process, researchers have studied the applicability of satellite imagery processed with heuristic and machine learning approaches. These approaches output binary or, more recently, multiclass damage states at the scale of a block or a single building. However, the current performance of such approaches limits practical applicability. To address this limitation, we introduce a metadata-enriched, transformer based framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure. Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023. Specifically, we demonstrate that incorporating metadata, such as seismic intensity indicators, soil properties, and SAR damage proxy maps not only enhances the model's accuracy and ability to distinguish between damage classes, but also improves its generalizability across various regions. Furthermore, we conducted a detailed, class-wise analysis of feature importance to understand the model's decision-making across different levels of building damage. This analysis reveals how individual metadata features uniquely contribute to predictions for each damage class. By leveraging both satellite imagery and metadata, our proposed framework enables faster and more accurate damage assessments for precise, multiclass, building-level evaluations that can improve disaster response and accelerate recovery efforts for affected communities.