Abstract:Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. One, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data, and two, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. In selecting transfer languages, our representations and composite distances consistently improve performance across a wide range of NLP tasks, providing a more principled and effective toolkit for multilingual research.




Abstract:URIEL is a knowledge base offering geographical, phylogenetic, and typological vector representations for 7970 languages. It includes distance measures between these vectors for 4005 languages, which are accessible via the lang2vec tool. Despite being frequently cited, URIEL is limited in terms of linguistic inclusion and overall usability. To tackle these challenges, we introduce URIEL+, an enhanced version of URIEL and lang2vec addressing these limitations. In addition to expanding typological feature coverage for 2898 languages, URIEL+ improves user experience with robust, customizable distance calculations to better suit the needs of the users. These upgrades also offer competitive performance on downstream tasks and provide distances that better align with linguistic distance studies.