Abstract:Operational deployment of a fully automated greenhouse gas (GHG) plume detection system remains an elusive goal for imaging spectroscopy missions, despite recent advances in deep learning approaches. With the dramatic increase in data availability, however, automation continues to increase in importance for natural and anthropogenic emissions monitoring. This work reviews and addresses several key obstacles in the field: data and label quality control, prevention of spatiotemporal biases, and correctly aligned modeling objectives. We demonstrate through rigorous experiments using multicampaign data from airborne and spaceborne instruments that convolutional neural networks (CNNs) are able to achieve operational detection performance when these obstacles are alleviated. We demonstrate that a multitask model that learns both instance detection and pixelwise segmentation simultaneously can successfully lead towards an operational pathway. We evaluate the model's plume detectability across emission source types and regions, identifying thresholds for operational deployment. Finally, we provide analysis-ready data, models, and source code for reproducibility, and work to define a set of best practices and validation standards to facilitate future contributions to the field.
Abstract:Current and upcoming generations of visible-shortwave infrared (VSWIR) imaging spectrometers promise unprecedented capacity to quantify Earth System processes across the globe. However, reliable cloud screening remains a fundamental challenge for these instruments, where traditional spatial and temporal approaches are limited by cloud variability and limited temporal coverage. The Spectroscopic Transformer (SpecTf) addresses these challenges with a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information (no spatial or temporal data are required). By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context. Our experiments demonstrate that SpecTf significantly outperforms the current baseline approach implemented for the EMIT instrument, and performs comparably with other machine learning methods with orders of magnitude fewer learned parameters. Critically, we demonstrate SpecTf's inherent interpretability through its attention mechanism, revealing physically meaningful spectral features the model has learned. Finally, we present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications, opening the door to instrument agnostic data driven algorithms for future imaging spectroscopy tasks.