Abstract:Testing cloud-controlled intelligent connected vehicles (ICVs) requires simulation environments that faithfully emulate both vehicle behavior and realistic communication latencies. This paper proposes a latency-aware co-simulation platform integrating CarMaker and Vissim to evaluate safety and comfort under real-world vehicle-to-cloud (V2C) latency conditions. Two communication latency models, derived from empirical 5G measurements in China and Hungary, are incorporated and statistically modeled using Gamma distributions. A proactive conflict module (PCM) is proposed to dynamically control background vehicles and generate safety-critical scenarios. The platform is validated through experiments involving an exemplary system under test (SUT) across six testing conditions combining two PCM modes (enabled/disabled) and three latency conditions (none, China, Hungary). Safety and comfort are assessed using metrics including collision rate, distance headway, post-encroachment time, and the spectral characteristics of longitudinal acceleration. Results show that the PCM effectively increases driving environment criticality, while V2C latency primarily affects ride comfort. These findings confirm the platform's effectiveness in systematically evaluating cloud-controlled ICVs under diverse testing conditions.
Abstract:Track testing plays a critical role in the safety evaluation of autonomous driving systems (ADS), as it provides a real-world interaction environment. However, the inflexibility in motion control of object targets and the absence of intelligent interactive testing methods often result in pre-fixed and limited testing scenarios. To address these limitations, we propose a novel 5G cloud-controlled track testing framework, Real-world Troublemaker. This framework overcomes the rigidity of traditional pre-programmed control by leveraging 5G cloud-controlled object targets integrated with the Internet of Things (IoT) and vehicle teleoperation technologies. Unlike conventional testing methods that rely on pre-set conditions, we propose a dynamic game strategy based on a quadratic risk interaction utility function, facilitating intelligent interactions with the vehicle under test (VUT) and creating a more realistic and dynamic interaction environment. The proposed framework has been successfully implemented at the Tongji University Intelligent Connected Vehicle Evaluation Base. Field test results demonstrate that Troublemaker can perform dynamic interactive testing of ADS accurately and effectively. Compared to traditional methods, Troublemaker improves scenario reproduction accuracy by 65.2\%, increases the diversity of interaction strategies by approximately 9.2 times, and enhances exposure frequency of safety-critical scenarios by 3.5 times in unprotected left-turn scenarios.