Institute for AI Safety and Security, German Aerospace Center
Abstract:We investigate the application of hybrid quantum tensor networks to aeroelastic problems, harnessing the power of Quantum Machine Learning (QML). By combining tensor networks with variational quantum circuits, we demonstrate the potential of QML to tackle complex time series classification and regression tasks. Our results showcase the ability of hybrid quantum tensor networks to achieve high accuracy in binary classification. Furthermore, we observe promising performance in regressing discrete variables. While hyperparameter selection remains a challenge, requiring careful optimisation to unlock the full potential of these models, this work contributes significantly to the development of QML for solving intricate problems in aeroelasticity. We present an end-to-end trainable hybrid algorithm. We first encode time series into tensor networks to then utilise trainable tensor networks for dimensionality reduction, and convert the resulting tensor to a quantum circuit in the encoding step. Then, a tensor network inspired trainable variational quantum circuit is applied to solve either a classification or a multivariate or univariate regression task in the aeroelasticity domain.




Abstract:Systemic drug administration often causes off-target effects limiting the efficacy of advanced therapies. Targeted drug delivery approaches increase local drug concentrations at the diseased site while minimizing systemic drug exposure. We present a magnetically guided microrobotic drug delivery system capable of precise navigation under physiological conditions. This platform integrates a clinical electromagnetic navigation system, a custom-designed release catheter, and a dissolvable capsule for accurate therapeutic delivery. In vitro tests showed precise navigation in human vasculature models, and in vivo experiments confirmed tracking under fluoroscopy and successful navigation in large animal models. The microrobot balances magnetic material concentration, contrast agent loading, and therapeutic drug capacity, enabling effective hosting of therapeutics despite the integration complexity of its components, offering a promising solution for precise targeted drug delivery.



Abstract:The impact of Large Language Models (LLMs) like GPT-3, GPT-4, and Bard in computer science (CS) education is expected to be profound. Students now have the power to generate code solutions for a wide array of programming assignments. For first-year students, this may be particularly problematic since the foundational skills are still in development and an over-reliance on generative AI tools can hinder their ability to grasp essential programming concepts. This paper analyzes the prompts used by 69 freshmen undergraduate students to solve a certain programming problem within a project assignment, without giving them prior prompt training. We also present the rules of the exercise that motivated the prompts, designed to foster critical thinking skills during the interaction. Despite using unsophisticated prompting techniques, our findings suggest that the majority of students successfully leveraged GPT, incorporating the suggested solutions into their projects. Additionally, half of the students demonstrated the ability to exercise judgment in selecting from multiple GPT-generated solutions, showcasing the development of their critical thinking skills in evaluating AI-generated code.
Abstract:Large Language Models (LLMs) like GPT and Bard are capable of producing code based on textual descriptions, with remarkable efficacy. Such technology will have profound implications for computing education, raising concerns about cheating, excessive dependence, and a decline in computational thinking skills, among others. There has been extensive research on how teachers should handle this challenge but it is also important to understand how students feel about this paradigm shift. In this research, 52 first-year CS students were surveyed in order to assess their views on technologies with code-generation capabilities, both from academic and professional perspectives. Our findings indicate that while students generally favor the academic use of GPT, they don't over rely on it, only mildly asking for its help. Although most students benefit from GPT, some struggle to use it effectively, urging the need for specific GPT training. Opinions on GPT's impact on their professional lives vary, but there is a consensus on its importance in academic practice.