Abstract:Purpose: This study proposes a framework for fine-tuning large language models (LLMs) with differential privacy (DP) to perform multi-abnormality classification on radiology report text. By injecting calibrated noise during fine-tuning, the framework seeks to mitigate the privacy risks associated with sensitive patient data and protect against data leakage while maintaining classification performance. Materials and Methods: We used 50,232 radiology reports from the publicly available MIMIC-CXR chest radiography and CT-RATE computed tomography datasets, collected between 2011 and 2019. Fine-tuning of LLMs was conducted to classify 14 labels from MIMIC-CXR dataset, and 18 labels from CT-RATE dataset using Differentially Private Low-Rank Adaptation (DP-LoRA) in high and moderate privacy regimes (across a range of privacy budgets = {0.01, 0.1, 1.0, 10.0}). Model performance was evaluated using weighted F1 score across three model architectures: BERT-medium, BERT-small, and ALBERT-base. Statistical analyses compared model performance across different privacy levels to quantify the privacy-utility trade-off. Results: We observe a clear privacy-utility trade-off through our experiments on 2 different datasets and 3 different models. Under moderate privacy guarantees the DP fine-tuned models achieved comparable weighted F1 scores of 0.88 on MIMIC-CXR and 0.59 on CT-RATE, compared to non-private LoRA baselines of 0.90 and 0.78, respectively. Conclusion: Differentially private fine-tuning using LoRA enables effective and privacy-preserving multi-abnormality classification from radiology reports, addressing a key challenge in fine-tuning LLMs on sensitive medical data.
Abstract:Causal Graph Discovery (CGD) is the process of estimating the underlying probabilistic graphical model that represents joint distribution of features of a dataset. CGD-algorithms are broadly classified into two categories: (i) Constraint-based algorithms (outcome depends on conditional independence (CI) tests), (ii) Score-based algorithms (outcome depends on optimized score-function). Since, sensitive features of observational data is prone to privacy-leakage, Differential Privacy (DP) has been adopted to ensure user privacy in CGD. Adding same amount of noise in this sequential-natured estimation process affects the predictive performance of the algorithms. As initial CI tests in constraint-based algorithms and later iterations of the optimization process of score-based algorithms are crucial, they need to be more accurate, less noisy. Based on this key observation, we present CURATE (CaUsal gRaph AdapTivE privacy), a DP-CGD framework with adaptive privacy budgeting. In contrast to existing DP-CGD algorithms with uniform privacy budgeting across all iterations, CURATE allows adaptive privacy budgeting by minimizing error probability (for constraint-based), maximizing iterations of the optimization problem (for score-based) while keeping the cumulative leakage bounded. To validate our framework, we present a comprehensive set of experiments on several datasets and show that CURATE achieves higher utility compared to existing DP-CGD algorithms with less privacy-leakage.