Abstract:We introduce JobResQA, a multilingual Question Answering benchmark for evaluating Machine Reading Comprehension (MRC) capabilities of LLMs on HR-specific tasks involving résumés and job descriptions. The dataset comprises 581 QA pairs across 105 synthetic résumé-job description pairs in five languages (English, Spanish, Italian, German, and Chinese), with questions spanning three complexity levels from basic factual extraction to complex cross-document reasoning. We propose a data generation pipeline derived from real-world sources through de-identification and data synthesis to ensure both realism and privacy, while controlled demographic and professional attributes (implemented via placeholders) enable systematic bias and fairness studies. We also present a cost-effective, human-in-the-loop translation pipeline based on the TEaR methodology, incorporating MQM error annotations and selective post-editing to ensure an high-quality multi-way parallel benchmark. We provide a baseline evaluations across multiple open-weight LLM families using an LLM-as-judge approach revealing higher performances on English and Spanish but substantial degradation for other languages, highlighting critical gaps in multilingual MRC capabilities for HR applications. JobResQA provides a reproducible benchmark for advancing fair and reliable LLM-based HR systems. The benchmark is publicly available at: https://github.com/Avature/jobresqa-benchmark
Abstract:Advances in natural language processing and large language models are driving a major transformation in Human Capital Management, with a growing interest in building smart systems based on language technologies for talent acquisition, upskilling strategies, and workforce planning. However, the adoption and progress of these technologies critically depend on the development of reliable and fair models, properly evaluated on public data and open benchmarks, which have so far been unavailable in this domain. To address this gap, we present TalentCLEF 2025, the first evaluation campaign focused on skill and job title intelligence. The lab consists of two tasks: Task A - Multilingual Job Title Matching, covering English, Spanish, German, and Chinese; and Task B - Job Title-Based Skill Prediction, in English. Both corpora were built from real job applications, carefully anonymized, and manually annotated to reflect the complexity and diversity of real-world labor market data, including linguistic variability and gender-marked expressions. The evaluations included monolingual and cross-lingual scenarios and covered the evaluation of gender bias. TalentCLEF attracted 76 registered teams with more than 280 submissions. Most systems relied on information retrieval techniques built with multilingual encoder-based models fine-tuned with contrastive learning, and several of them incorporated large language models for data augmentation or re-ranking. The results show that the training strategies have a larger effect than the size of the model alone. TalentCLEF provides the first public benchmark in this field and encourages the development of robust, fair, and transferable language technologies for the labor market.