Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Resource-efficient Deep Neural Networks for Automotive Radar Interference Mitigation



Johanna Rock , Wolfgang Roth , Mate Toth , Paul Meissner , Franz Pernkopf

* IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 927-940, June 2021 
* 15 pages; published in IEEE Journal of Selected Topics in Signal Processing, Special Issue on Recent Advances in Automotive Radar Signal Processing, Volume: 15, Issue: 4, June 2021. arXiv admin note: text overlap with arXiv:2011.12706 

   Access Paper or Ask Questions

Complex-valued Convolutional Neural Networks for Enhanced Radar Signal Denoising and Interference Mitigation



Alexander Fuchs , Johanna Rock , Mate Toth , Paul Meissner , Franz Pernkopf

* IEEE International Radar Conference 2021 

   Access Paper or Ask Questions

Deep Interference Mitigation and Denoising of Real-World FMCW Radar Signals



Johanna Rock , Mate Toth , Paul Meissner , Franz Pernkopf

* 2020 IEEE International Radar Conference (RADAR) 

   Access Paper or Ask Questions

Quantized Neural Networks for Radar Interference Mitigation



Johanna Rock , Wolfgang Roth , Paul Meissner , Franz Pernkopf

* ITEM Workshop at ECML-PKDD 2020 

   Access Paper or Ask Questions

Complex Signal Denoising and Interference Mitigation for Automotive Radar Using Convolutional Neural Networks



Johanna Rock , Mate Toth , Elmar Messner , Paul Meissner , Franz Pernkopf

* FUSION 2019; 8 pages 

   Access Paper or Ask Questions

Cognitive Indoor Positioning and Tracking using Multipath Channel Information



Erik Leitinger , Paul Meissner , Simon Haykin , Klaus Witrisal

* 13 pages, 11 figures 

   Access Paper or Ask Questions