Abstract:Enterprise LLM deployment faces a critical scalability challenge: organizations must optimize models systematically to scale AI initiatives within constrained compute budgets, yet the specialized expertise required for manual optimization remains a niche and scarce skillset. This challenge is particularly evident in managing GPU utilization across heterogeneous infrastructure while enabling teams with diverse workloads and limited LLM optimization experience to deploy models efficiently. We present OptiKIT, a distributed LLM optimization framework that democratizes model compression and tuning by automating complex optimization workflows for non-expert teams. OptiKIT provides dynamic resource allocation, staged pipeline execution with automatic cleanup, and seamless enterprise integration. In production, it delivers more than 2x GPU throughput improvement while empowering application teams to achieve consistent performance improvements without deep LLM optimization expertise. We share both the platform design and key engineering insights into resource allocation algorithms, pipeline orchestration, and integration patterns that enable large-scale, production-grade democratization of model optimization. Finally, we open-source the system to enable external contributions and broader reproducibility.
Abstract:We present the e-Llama models: 8 billion and 70 billion parameter large language models that are adapted towards the e-commerce domain. These models are meant as foundation models with deep knowledge about e-commerce, that form a base for instruction- and fine-tuning. The e-Llama models are obtained by continuously pretraining the Llama 3.1 base models on 1 trillion tokens of domain-specific data. We discuss our approach and motivate our choice of hyperparameters with a series of ablation studies. To quantify how well the models have been adapted to the e-commerce domain, we define and implement a set of multilingual, e-commerce specific evaluation tasks. We show that, when carefully choosing the training setup, the Llama 3.1 models can be adapted towards the new domain without sacrificing significant performance on general domain tasks. We also explore the possibility of merging the adapted model and the base model for a better control of the performance trade-off between domains.