Abstract:Enterprise LLM deployment faces a critical scalability challenge: organizations must optimize models systematically to scale AI initiatives within constrained compute budgets, yet the specialized expertise required for manual optimization remains a niche and scarce skillset. This challenge is particularly evident in managing GPU utilization across heterogeneous infrastructure while enabling teams with diverse workloads and limited LLM optimization experience to deploy models efficiently. We present OptiKIT, a distributed LLM optimization framework that democratizes model compression and tuning by automating complex optimization workflows for non-expert teams. OptiKIT provides dynamic resource allocation, staged pipeline execution with automatic cleanup, and seamless enterprise integration. In production, it delivers more than 2x GPU throughput improvement while empowering application teams to achieve consistent performance improvements without deep LLM optimization expertise. We share both the platform design and key engineering insights into resource allocation algorithms, pipeline orchestration, and integration patterns that enable large-scale, production-grade democratization of model optimization. Finally, we open-source the system to enable external contributions and broader reproducibility.
Abstract:This work explores the use of gradient boosting in the context of classification. Four popular implementations, including original GBM algorithm and selected state-of-the-art gradient boosting frameworks (i.e. XGBoost, LightGBM and CatBoost), have been thoroughly compared on several publicly available real-world datasets of sufficient diversity. In the study, special emphasis was placed on hyperparameter optimization, specifically comparing two tuning strategies, i.e. randomized search and Bayesian optimization using the Tree-stuctured Parzen Estimator. The performance of considered methods was investigated in terms of common classification accuracy metrics as well as runtime and tuning time. Additionally, obtained results have been validated using appropriate statistical testing. An attempt was made to indicate a gradient boosting variant showing the right balance between effectiveness, reliability and ease of use.