Abstract:Large language models excel at instruction-following in English, but their performance in low-resource languages like Thai remains underexplored. Existing benchmarks often rely on translations, missing cultural and domain-specific nuances needed for real-world use. We present WangchanThaiInstruct, a human-authored Thai dataset for evaluation and instruction tuning, covering four professional domains and seven task types. Created through a multi-stage quality control process with annotators, domain experts, and AI researchers, WangchanThaiInstruct supports two studies: (1) a zero-shot evaluation showing performance gaps on culturally and professionally specific tasks, and (2) an instruction tuning study with ablations isolating the effect of native supervision. Models fine-tuned on WangchanThaiInstruct outperform those using translated data in both in-domain and out-of-domain benchmarks. These findings underscore the need for culturally and professionally grounded instruction data to improve LLM alignment in low-resource, linguistically diverse settings.
Abstract:Sentence embeddings are essential for NLP tasks such as semantic search, re-ranking, and textual similarity. Although multilingual benchmarks like MMTEB broaden coverage, Southeast Asia (SEA) datasets are scarce and often machine-translated, missing native linguistic properties. With nearly 700 million speakers, the SEA region lacks a region-specific embedding benchmark. We introduce SEA-BED, the first large-scale SEA embedding benchmark with 169 datasets across 9 tasks and 10 languages, where 71% are formulated by humans, not machine generation or translation. We address three research questions: (1) which SEA languages and tasks are challenging, (2) whether SEA languages show unique performance gaps globally, and (3) how human vs. machine translations affect evaluation. We evaluate 17 embedding models across six studies, analyzing task and language challenges, cross-benchmark comparisons, and translation trade-offs. Results show sharp ranking shifts, inconsistent model performance among SEA languages, and the importance of human-curated datasets for low-resource languages like Burmese.
Abstract:Dense retrieval is a basic building block of information retrieval applications. One of the main challenges of dense retrieval in real-world settings is the handling of queries containing misspelled words. A popular approach for handling misspelled queries is minimizing the representations discrepancy between misspelled queries and their pristine ones. Unlike the existing approaches, which only focus on the alignment between misspelled and pristine queries, our method also improves the contrast between each misspelled query and its surrounding queries. To assess the effectiveness of our proposed method, we compare it against the existing competitors using two benchmark datasets and two base encoders. Our method outperforms the competitors in all cases with misspelled queries. Our code and models are available at https://github. com/panuthept/DST-DenseRetrieval.