Abstract:Understanding an agent's intent through its behavior is essential in human-robot interaction, interactive AI systems, and multi-agent collaborations. This task, known as Goal Recognition (GR), poses significant challenges in dynamic environments where goals are numerous and constantly evolving. Traditional GR methods, designed for a predefined set of goals, often struggle to adapt to these dynamic scenarios. To address this limitation, we introduce the General Dynamic GR problem - a broader definition of GR - aimed at enabling real-time GR systems and fostering further research in this area. Expanding on this foundation, this paper employs a model-free goal-conditioned RL approach to enable fast adaptation for GR across various changing tasks.
Abstract:Traditionally, Reinforcement Learning (RL) problems are aimed at optimization of the behavior of an agent. This paper proposes a novel take on RL, which is used to learn the policy of another agent, to allow real-time recognition of that agent's goals. Goal Recognition (GR) has traditionally been framed as a planning problem where one must recognize an agent's objectives based on its observed actions. Recent approaches have shown how reinforcement learning can be used as part of the GR pipeline, but are limited to recognizing predefined goals and lack scalability in domains with a large goal space. This paper formulates a novel problem, "Online Dynamic Goal Recognition" (ODGR), as a first step to address these limitations. Contributions include introducing the concept of dynamic goals into the standard GR problem definition, revisiting common approaches by reformulating them using ODGR, and demonstrating the feasibility of solving ODGR in a navigation domain using transfer learning. These novel formulations open the door for future extensions of existing transfer learning-based GR methods, which will be robust to changing and expansive real-time environments.