Abstract:Goal Recognition (GR) is the problem of recognizing an agent's objectives based on observed actions. Recent data-driven approaches for GR alleviate the need for costly, manually crafted domain models. However, these approaches can only reason about a pre-defined set of goals, and time-consuming training is needed for new emerging goals. To keep this model-learning automated while enabling quick adaptation to new goals, this paper introduces GRAML: Goal Recognition As Metric Learning. GRAML uses a Siamese network to treat GR as a deep metric learning task, employing an RNN that learns a metric over an embedding space, where the embeddings for observation traces leading to different goals are distant, and embeddings of traces leading to the same goals are close. This metric is especially useful when adapting to new goals, even if given just one example observation trace per goal. Evaluated on a versatile set of environments, GRAML shows speed, flexibility, and runtime improvements over the state-of-the-art GR while maintaining accurate recognition.
Abstract:Traditionally, Reinforcement Learning (RL) problems are aimed at optimization of the behavior of an agent. This paper proposes a novel take on RL, which is used to learn the policy of another agent, to allow real-time recognition of that agent's goals. Goal Recognition (GR) has traditionally been framed as a planning problem where one must recognize an agent's objectives based on its observed actions. Recent approaches have shown how reinforcement learning can be used as part of the GR pipeline, but are limited to recognizing predefined goals and lack scalability in domains with a large goal space. This paper formulates a novel problem, "Online Dynamic Goal Recognition" (ODGR), as a first step to address these limitations. Contributions include introducing the concept of dynamic goals into the standard GR problem definition, revisiting common approaches by reformulating them using ODGR, and demonstrating the feasibility of solving ODGR in a navigation domain using transfer learning. These novel formulations open the door for future extensions of existing transfer learning-based GR methods, which will be robust to changing and expansive real-time environments.