Abstract:Water distribution systems in rural areas face serious challenges such as a lack of real-time monitoring, vulnerability to cyberattacks, and unreliable data handling. This paper presents an integrated framework that combines LoRaWAN-based data acquisition, a machine learning-driven Intrusion Detection System (IDS), and a blockchain-enabled Digital Twin (BC-DT) platform for secure and transparent water management. The IDS filters anomalous or spoofed data using a Long Short-Term Memory (LSTM) Autoencoder and Isolation Forest before validated data is logged via smart contracts on a private Ethereum blockchain using Proof of Authority (PoA) consensus. The verified data feeds into a real-time DT model supporting leak detection, consumption forecasting, and predictive maintenance. Experimental results demonstrate that the system achieves over 80 transactions per second (TPS) with under 2 seconds of latency while remaining cost-effective and scalable for up to 1,000 smart meters. This work demonstrates a practical and secure architecture for decentralized water infrastructure in under-connected rural environments.
Abstract:The potential of digital twin technology is yet to be fully realized due to its diversity and untapped potential. Digital twins enable systems' analysis, design, optimization, and evolution to be performed digitally or in conjunction with a cyber-physical approach to improve speed, accuracy, and efficiency over traditional engineering methods. Industry 4.0, factories of the future, and digital twins continue to benefit from the technology and provide enhanced efficiency within existing systems. Due to the lack of information and security standards associated with the transition to cyber digitization, cybercriminals have been able to take advantage of the situation. Access to a digital twin of a product or service is equivalent to threatening the entire collection. There is a robust interaction between digital twins and artificial intelligence tools, which leads to strong interaction between these technologies, so it can be used to improve the cybersecurity of these digital platforms based on their integration with these technologies. This study aims to investigate the role of artificial intelligence in providing cybersecurity for digital twin versions of various industries, as well as the risks associated with these versions. In addition, this research serves as a road map for researchers and others interested in cybersecurity and digital security.