Abstract:Digital Twins have emerged as a disruptive technology with great potential; they can enhance WDS by offering real-time monitoring, predictive maintenance, and optimization capabilities. This paper describes the development of a state-of-the-art DT platform for WDS, introducing advanced technologies such as the Internet of Things, Artificial Intelligence, and Machine Learning models. This paper provides insight into the architecture of the proposed platform-CAUCCES-that, informed by both historical and meteorological data, effectively deploys AI/ML models like LSTM networks, Prophet, LightGBM, and XGBoost in trying to predict water consumption patterns. Furthermore, we delve into how optimization in the maintenance of WDS can be achieved by formulating a Constraint Programming problem for scheduling, hence minimizing the operational cost efficiently with reduced environmental impacts. It also focuses on cybersecurity and protection to ensure the integrity and reliability of the DT platform. In this view, the system will contribute to improvements in decision-making capabilities, operational efficiency, and system reliability, with reassurance being drawn from the important role it can play toward sustainable management of water resources.
Abstract:The potential of digital twin technology is yet to be fully realized due to its diversity and untapped potential. Digital twins enable systems' analysis, design, optimization, and evolution to be performed digitally or in conjunction with a cyber-physical approach to improve speed, accuracy, and efficiency over traditional engineering methods. Industry 4.0, factories of the future, and digital twins continue to benefit from the technology and provide enhanced efficiency within existing systems. Due to the lack of information and security standards associated with the transition to cyber digitization, cybercriminals have been able to take advantage of the situation. Access to a digital twin of a product or service is equivalent to threatening the entire collection. There is a robust interaction between digital twins and artificial intelligence tools, which leads to strong interaction between these technologies, so it can be used to improve the cybersecurity of these digital platforms based on their integration with these technologies. This study aims to investigate the role of artificial intelligence in providing cybersecurity for digital twin versions of various industries, as well as the risks associated with these versions. In addition, this research serves as a road map for researchers and others interested in cybersecurity and digital security.