Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:A recent line of work has shown a surprising connection between multicalibration, a multi-group fairness notion, and omniprediction, a learning paradigm that provides simultaneous loss minimization guarantees for a large family of loss functions. Prior work studies omniprediction in the batch setting. We initiate the study of omniprediction in the online adversarial setting. Although there exist algorithms for obtaining notions of multicalibration in the online adversarial setting, unlike batch algorithms, they work only for small finite classes of benchmark functions $F$, because they require enumerating every function $f \in F$ at every round. In contrast, omniprediction is most interesting for learning theoretic hypothesis classes $F$, which are generally continuously large. We develop a new online multicalibration algorithm that is well defined for infinite benchmark classes $F$, and is oracle efficient (i.e. for any class $F$, the algorithm has the form of an efficient reduction to a no-regret learning algorithm for $F$). The result is the first efficient online omnipredictor -- an oracle efficient prediction algorithm that can be used to simultaneously obtain no regret guarantees to all Lipschitz convex loss functions. For the class $F$ of linear functions, we show how to make our algorithm efficient in the worst case. Also, we show upper and lower bounds on the extent to which our rates can be improved: our oracle efficient algorithm actually promises a stronger guarantee called swap-omniprediction, and we prove a lower bound showing that obtaining $O(\sqrt{T})$ bounds for swap-omniprediction is impossible in the online setting. On the other hand, we give a (non-oracle efficient) algorithm which can obtain the optimal $O(\sqrt{T})$ omniprediction bounds without going through multicalibration, giving an information theoretic separation between these two solution concepts.

Via

Figures and Tables:

Abstract:While explainability is a desirable characteristic of increasingly complex black-box models, modern explanation methods have been shown to be inconsistent and contradictory. The semantics of explanations is not always fully understood - to what extent do explanations "explain" a decision and to what extent do they merely advocate for a decision? Can we help humans gain insights from explanations accompanying correct predictions and not over-rely on incorrect predictions advocated for by explanations? With this perspective in mind, we introduce the notion of dissenting explanations: conflicting predictions with accompanying explanations. We first explore the advantage of dissenting explanations in the setting of model multiplicity, where multiple models with similar performance may have different predictions. In such cases, providing dissenting explanations could be done by invoking the explanations of disagreeing models. Through a pilot study, we demonstrate that dissenting explanations reduce overreliance on model predictions, without reducing overall accuracy. Motivated by the utility of dissenting explanations we present both global and local methods for their generation.

Via

Figures and Tables:

Abstract:This work initiates the systematic study of explicit distributions that are indistinguishable from a single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are indistinguishable from the uniform distribution, satisfying some global properties (which they coined truthfulness). Indistinguishability from a single object is motivated by the study of generative models in learning theory and regularity lemmas in graph theory. Problems that are well understood in the setting of pseudorandomness present significant challenges and at times are impossible when considering generative models of huge objects. We demonstrate the versatility of this study by providing a learning algorithm for huge indistinguishable objects in several natural settings including: dense functions and graphs with a truthfulness requirement on the number of ones in the function or edges in the graphs, and a version of the weak regularity lemma for sparse graphs that satisfy some global properties. These and other results generalize basic pseudorandom objects as well as notions introduced in algorithmic fairness. The results rely on notions and techniques from a variety of areas including learning theory, complexity theory, cryptography, and game theory.

Via

Figures and Tables:

Abstract:A recent line of work shows that notions of multigroup fairness imply surprisingly strong notions of omniprediction: loss minimization guarantees that apply not just for a specific loss function, but for any loss belonging to a large family of losses. While prior work has derived various notions of omniprediction from multigroup fairness guarantees of varying strength, it was unknown whether the connection goes in both directions. In this work, we answer this question in the affirmative, establishing equivalences between notions of multicalibration and omniprediction. The new definitions that hold the key to this equivalence are new notions of swap omniprediction, which are inspired by swap regret in online learning. We show that these can be characterized exactly by a strengthening of multicalibration that we refer to as swap multicalibration. One can go from standard to swap multicalibration by a simple discretization; moreover all known algorithms for standard multicalibration in fact give swap multicalibration. In the context of omniprediction though, introducing the notion of swapping results in provably stronger notions, which require a predictor to minimize expected loss at least as well as an adaptive adversary who can choose both the loss function and hypothesis based on the value predicted by the predictor. Building on these characterizations, we paint a complete picture of the relationship between the various omniprediction notions in the literature by establishing implications and separations between them. Our work deepens our understanding of the connections between multigroup fairness, loss minimization and outcome indistinguishability and establishes new connections to classic notions in online learning.

Via

Figures and Tables:

Abstract:We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests--based on a collection of losses and hypothesis class--a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature's true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses. This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.

Via

Abstract:The notion of omnipredictors (Gopalan, Kalai, Reingold, Sharan and Wieder ITCS 2021), suggested a new paradigm for loss minimization. Rather than learning a predictor based on a known loss function, omnipredictors can easily be post-processed to minimize any one of a rich family of loss functions compared with the loss of a class $C$. It has been shown that such omnipredictors exist and are implied (for all convex and Lipschitz loss functions) by the notion of multicalibration from the algorithmic fairness literature. Nevertheless, it is often the case that the action selected must obey some additional constraints (such as capacity or parity constraints). In itself, the original notion of omnipredictors does not apply in this well-motivated and heavily studied the context of constrained loss minimization. In this paper, we introduce omnipredictors for constrained optimization and study their complexity and implications. The notion that we introduce allows the learner to be unaware of the loss function that will be later assigned as well as the constraints that will be later imposed, as long as the subpopulations that are used to define these constraints are known. The paper shows how to obtain omnipredictors for constrained optimization problems, relying on appropriate variants of multicalibration. For some interesting constraints and general loss functions and for general constraints and some interesting loss functions, we show how omnipredictors are implied by a variant of multicalibration that is similar in complexity to standard multicalibration. We demonstrate that in the general case, standard multicalibration is insufficient and show that omnipredictors are implied by multicalibration with respect to a class containing all the level sets of hypotheses in $C$. We also investigate the implications when the constraints are group fairness notions.

Via

Abstract:We give the first sample complexity characterizations for outcome indistinguishability, a theoretical framework of machine learning recently introduced by Dwork, Kim, Reingold, Rothblum, and Yona (STOC 2021). In outcome indistinguishability, the goal of the learner is to output a predictor that cannot be distinguished from the target predictor by a class $D$ of distinguishers examining the outcomes generated according to the predictors' predictions. In the distribution-specific and realizable setting where the learner is given the data distribution together with a predictor class $P$ containing the target predictor, we show that the sample complexity of outcome indistinguishability is characterized by the metric entropy of $P$ w.r.t. the dual Minkowski norm defined by $D$, and equivalently by the metric entropy of $D$ w.r.t. the dual Minkowski norm defined by $P$. This equivalence makes an intriguing connection to the long-standing metric entropy duality conjecture in convex geometry. Our sample complexity characterization implies a variant of metric entropy duality, which we show is nearly tight. In the distribution-free setting, we focus on the case considered by Dwork et al. where $P$ contains all possible predictors, hence the sample complexity only depends on $D$. In this setting, we show that the sample complexity of outcome indistinguishability is characterized by the fat-shattering dimension of $D$. We also show a strong sample complexity separation between realizable and agnostic outcome indistinguishability in both the distribution-free and the distribution-specific settings. This is in contrast to distribution-free (resp. distribution-specific) PAC learning where the sample complexity in both the realizable and the agnostic settings can be characterized by the VC dimension (resp. metric entropy).

Via

Figures and Tables:

Abstract:Estimating the Kullback-Leibler (KL) divergence between two distributions given samples from them is well-studied in machine learning and information theory. Motivated by considerations of multi-group fairness, we seek KL divergence estimates that accurately reflect the contributions of sub-populations to the overall divergence. We model the sub-populations coming from a rich (possibly infinite) family $\mathcal{C}$ of overlapping subsets of the domain. We propose the notion of multi-group attribution for $\mathcal{C}$, which requires that the estimated divergence conditioned on every sub-population in $\mathcal{C}$ satisfies some natural accuracy and fairness desiderata, such as ensuring that sub-populations where the model predicts significant divergence do diverge significantly in the two distributions. Our main technical contribution is to show that multi-group attribution can be derived from the recently introduced notion of multi-calibration for importance weights [HKRR18, GRSW21]. We provide experimental evidence to support our theoretical results, and show that multi-group attribution provides better KL divergence estimates when conditioned on sub-populations than other popular algorithms.

Via

Figures and Tables:

Abstract:Loss minimization is a dominant paradigm in machine learning, where a predictor is trained to minimize some loss function that depends on an uncertain event (e.g., "will it rain tomorrow?''). Different loss functions imply different learning algorithms and, at times, very different predictors. While widespread and appealing, a clear drawback of this approach is that the loss function may not be known at the time of learning, requiring the algorithm to use a best-guess loss function. We suggest a rigorous new paradigm for loss minimization in machine learning where the loss function can be ignored at the time of learning and only be taken into account when deciding an action. We introduce the notion of an (${\mathcal{L}},\mathcal{C}$)-omnipredictor, which could be used to optimize any loss in a family ${\mathcal{L}}$. Once the loss function is set, the outputs of the predictor can be post-processed (a simple univariate data-independent transformation of individual predictions) to do well compared with any hypothesis from the class $\mathcal{C}$. The post processing is essentially what one would perform if the outputs of the predictor were true probabilities of the uncertain events. In a sense, omnipredictors extract all the predictive power from the class $\mathcal{C}$, irrespective of the loss function in $\mathcal{L}$. We show that such "loss-oblivious'' learning is feasible through a connection to multicalibration, a notion introduced in the context of algorithmic fairness. In addition, we show how multicalibration can be viewed as a solution concept for agnostic boosting, shedding new light on past results. Finally, we transfer our insights back to the context of algorithmic fairness by providing omnipredictors for multi-group loss minimization.

Via

Abstract:The ratio between the probability that two distributions $R$ and $P$ give to points $x$ are known as importance weights or propensity scores and play a fundamental role in many different fields, most notably, statistics and machine learning. Among its applications, importance weights are central to domain adaptation, anomaly detection, and estimations of various divergences such as the KL divergence. We consider the common setting where $R$ and $P$ are only given through samples from each distribution. The vast literature on estimating importance weights is either heuristic, or makes strong assumptions about $R$ and $P$ or on the importance weights themselves. In this paper, we explore a computational perspective to the estimation of importance weights, which factors in the limitations and possibilities obtainable with bounded computational resources. We significantly strengthen previous work that use the MaxEntropy approach, that define the importance weights based on a distribution $Q$ closest to $P$, that looks the same as $R$ on every set $C \in \mathcal{C}$, where $\mathcal{C}$ may be a huge collection of sets. We show that the MaxEntropy approach may fail to assign high average scores to sets $C \in \mathcal{C}$, even when the average of ground truth weights for the set is evidently large. We similarly show that it may overestimate the average scores to sets $C \in \mathcal{C}$. We therefore formulate Sandwiching bounds as a notion of set-wise accuracy for importance weights. We study these bounds to show that they capture natural completeness and soundness requirements from the weights. We present an efficient algorithm that under standard learnability assumptions computes weights which satisfy these bounds. Our techniques rely on a new notion of multicalibrated partitions of the domain of the distributions, which appear to be useful objects in their own right.

Via