Alert button
Picture for Oliver Speck

Oliver Speck

Alert button

PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation

Dec 25, 2023
Soumick Chatterjee, Franziska Gaidzik, Alessandro Sciarra, Hendrik Mattern, Gábor Janiga, Oliver Speck, Andreas Nürnberger, Sahani Pathiraja

Viaarxiv icon

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

Sep 12, 2023
Jianning Li, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Xiaojun Chen, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Christos Davatzikos, Behrus Puladi, Jens Kleesiek, Jan Egger

Figure 1 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 2 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 3 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 4 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Viaarxiv icon

Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique

Feb 09, 2023
Soumick Chatterjee, Hana Haseljić, Robert Frysch, Vojtěch Kulvait, Vladimir Semshchikov, Bennet Hensen, Frank Wacker, Inga Brüschx, Thomas Werncke, Oliver Speck, Andreas Nürnberger, Georg Rose

Figure 1 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 2 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 3 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 4 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Viaarxiv icon

Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN

Feb 09, 2023
Soumick Chatterjee, Pavan Tummala, Oliver Speck, Andreas Nürnberger

Figure 1 for Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
Figure 2 for Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
Figure 3 for Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
Figure 4 for Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
Viaarxiv icon

Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging

Jul 20, 2022
Hana Haseljić, Soumick Chatterjee, Robert Frysch, Vojtěch Kulvait, Vladimir Semshchikov, Bennet Hensen, Frank Wacker, Inga Brüsch, Thomas Werncke, Oliver Speck, Andreas Nürnberger, Georg Rose

Figure 1 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 2 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 3 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 4 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Viaarxiv icon

Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images

Jun 14, 2022
Alessandro Sciarra, Soumick Chatterjee, Max Dünnwald, Giuseppe Placidi, Andreas Nürnberger, Oliver Speck, Steffen Oeltze-Jafra

Figure 1 for Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Figure 2 for Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Figure 3 for Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Figure 4 for Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Viaarxiv icon

Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification

Jun 10, 2022
Soumick Chatterjee, Hadya Yassin, Florian Dubost, Andreas Nürnberger, Oliver Speck

Figure 1 for Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Figure 2 for Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Figure 3 for Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Figure 4 for Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Viaarxiv icon

MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent

Mar 08, 2022
Soumick Chatterjee, Himanshi Bajaj, Istiyak H. Siddiquee, Nandish Bandi Subbarayappa, Steve Simon, Suraj Bangalore Shashidhar, Oliver Speck, Andreas Nürnberge

Figure 1 for MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent
Figure 2 for MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent
Figure 3 for MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent
Figure 4 for MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent
Viaarxiv icon

DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI

Feb 10, 2022
Soumick Chatterjee, Chompunuch Sarasaen, Georg Rose, Andreas Nürnberger, Oliver Speck

Figure 1 for DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI
Figure 2 for DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI
Figure 3 for DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI
Figure 4 for DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI
Viaarxiv icon

StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder

Jan 31, 2022
Soumick Chatterjee, Alessandro Sciarra, Max Dünnwald, Pavan Tummala, Shubham Kumar Agrawal, Aishwarya Jauhari, Aman Kalra, Steffen Oeltze-Jafra, Oliver Speck, Andreas Nürnberger

Figure 1 for StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Figure 2 for StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Figure 3 for StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Figure 4 for StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Viaarxiv icon