Alert button
Picture for Vojtěch Kulvait

Vojtěch Kulvait

Alert button

Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany

Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique

Add code
Bookmark button
Alert button
Feb 09, 2023
Soumick Chatterjee, Hana Haseljić, Robert Frysch, Vojtěch Kulvait, Vladimir Semshchikov, Bennet Hensen, Frank Wacker, Inga Brüschx, Thomas Werncke, Oliver Speck, Andreas Nürnberger, Georg Rose

Figure 1 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 2 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 3 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Figure 4 for Liver Segmentation in Time-resolved C-arm CT Volumes Reconstructed from Dynamic Perfusion Scans using Time Separation Technique
Viaarxiv icon

Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging

Add code
Bookmark button
Alert button
Jul 20, 2022
Hana Haseljić, Soumick Chatterjee, Robert Frysch, Vojtěch Kulvait, Vladimir Semshchikov, Bennet Hensen, Frank Wacker, Inga Brüsch, Thomas Werncke, Oliver Speck, Andreas Nürnberger, Georg Rose

Figure 1 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 2 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 3 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Figure 4 for Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging
Viaarxiv icon

Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces

Add code
Bookmark button
Alert button
Nov 02, 2021
Vojtěch Kulvait, Philip Hoelter, Arnd Doerfler, Georg Rose

Figure 1 for Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Figure 2 for Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Figure 3 for Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Figure 4 for Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Viaarxiv icon

Application of Time Separation Technique to Enhance C-arm CT Dynamic Liver Perfusion Imaging

Add code
Bookmark button
Alert button
Oct 27, 2021
Hana Haseljić, Vojtěch Kulvait, Robert Frysch, Bennet Hensen, Frank Wacker, Georg Rose, Thomas Werncke

Figure 1 for Application of Time Separation Technique to Enhance C-arm CT Dynamic Liver Perfusion Imaging
Figure 2 for Application of Time Separation Technique to Enhance C-arm CT Dynamic Liver Perfusion Imaging
Figure 3 for Application of Time Separation Technique to Enhance C-arm CT Dynamic Liver Perfusion Imaging
Figure 4 for Application of Time Separation Technique to Enhance C-arm CT Dynamic Liver Perfusion Imaging
Viaarxiv icon

Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator

Add code
Bookmark button
Alert button
Oct 26, 2021
Vojtěch Kulvait, Georg Rose

Figure 1 for Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator
Figure 2 for Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator
Figure 3 for Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator
Viaarxiv icon

Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator

Add code
Bookmark button
Alert button
Oct 19, 2021
Vojtěch Kulvait, Georg Rose

Figure 1 for Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
Figure 2 for Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
Figure 3 for Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
Figure 4 for Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
Viaarxiv icon

Time separation technique with the basis of trigonometric functions as an efficient method for flat detector CT brain perfusion imaging

Add code
Bookmark button
Alert button
Oct 18, 2021
Vojtěch Kulvait, Philip Hoelter, Robert Frysch, Hana Haseljić, Arnd Doerfler, Georg Rose

Figure 1 for Time separation technique with the basis of trigonometric functions as an efficient method for flat detector CT brain perfusion imaging
Figure 2 for Time separation technique with the basis of trigonometric functions as an efficient method for flat detector CT brain perfusion imaging
Figure 3 for Time separation technique with the basis of trigonometric functions as an efficient method for flat detector CT brain perfusion imaging
Figure 4 for Time separation technique with the basis of trigonometric functions as an efficient method for flat detector CT brain perfusion imaging
Viaarxiv icon