Abstract:Self-supervised learning (SSL) has proven to be a powerful approach for extracting biologically meaningful representations from single-cell data. To advance our understanding of SSL methods applied to single-cell data, we present scSSL-Bench, a comprehensive benchmark that evaluates nineteen SSL methods. Our evaluation spans nine datasets and focuses on three common downstream tasks: batch correction, cell type annotation, and missing modality prediction. Furthermore, we systematically assess various data augmentation strategies. Our analysis reveals task-specific trade-offs: the specialized single-cell frameworks, scVI, CLAIRE, and the finetuned scGPT excel at uni-modal batch correction, while generic SSL methods, such as VICReg and SimCLR, demonstrate superior performance in cell typing and multi-modal data integration. Random masking emerges as the most effective augmentation technique across all tasks, surpassing domain-specific augmentations. Notably, our results indicate the need for a specialized single-cell multi-modal data integration framework. scSSL-Bench provides a standardized evaluation platform and concrete recommendations for applying SSL to single-cell analysis, advancing the convergence of deep learning and single-cell genomics.
Abstract:Humans struggle to perceive and interpret high-dimensional data. Therefore, high-dimensional data are often projected into two dimensions for visualization. Many applications benefit from complex nonlinear dimensionality reduction techniques, but the effects of individual high-dimensional features are hard to explain in the two-dimensional space. Most visualization solutions use multiple two-dimensional plots, each showing the effect of one high-dimensional feature in two dimensions; this approach creates a need for a visual inspection of k plots for a k-dimensional input space. Our solution, Feature Clock, provides a novel approach that eliminates the need to inspect these k plots to grasp the influence of original features on the data structure depicted in two dimensions. Feature Clock enhances the explainability and compactness of visualizations of embedded data and is available in an open-source Python library.