Abstract:Detecting ship presence via wake signatures in SAR imagery is attracting considerable research interest, but limited annotated data availability poses significant challenges for supervised learning. Physics-based simulations are commonly used to address this data scarcity, although they are slow and constrain end-to-end learning. In this work, we explore a new direction for more efficient and end-to-end SAR ship wake simulation using a diffusion model trained on data generated by a physics-based simulator. The training dataset is built by pairing images produced by the simulator with text prompts derived from simulation parameters. Experimental result show that the model generates realistic Kelvin wake patterns and achieves significantly faster inference than the physics-based simulator. These results highlight the potential of diffusion models for fast and controllable wake image generation, opening new possibilities for end-to-end downstream tasks in maritime SAR analysis.
Abstract:We introduce R-Sparse R-CNN, a novel pipeline for oriented ship detection in Synthetic Aperture Radar (SAR) images that leverages sparse learnable proposals enriched with background contextual information, termed background-aware proposals (BAPs). The adoption of sparse proposals streamlines the pipeline by eliminating the need for proposal generators and post-processing for overlapping predictions. The proposed BAPs enrich object representation by integrating ship and background features, allowing the model to learn their contextual relationships for more accurate distinction of ships in complex environments. To complement BAPs, we propose Dual-Context Pooling (DCP), a novel strategy that jointly extracts ship and background features in a single unified operation. This unified design improves efficiency by eliminating redundant computation inherent in separate pooling. Moreover, by ensuring that ship and background features are pooled from the same feature map level, DCP provides aligned features that improve contextual relationship learning. Finally, as a core component of contextual relationship learning in R-Sparse R-CNN, we design a dedicated transformer-based Interaction Module. This module interacts pooled ship and background features with corresponding proposal features and models their relationships. Experimental results show that R-Sparse R-CNN delivers outstanding accuracy, surpassing state-of-the-art models by margins of up to 12.8% and 11.9% on SSDD and RSDD-SAR inshore datasets, respectively. These results demonstrate the effectiveness and competitiveness of R-Sparse R-CNN as a robust framework for oriented ship detection in SAR imagery. The code is available at: www.github.com/ka-mirul/R-Sparse-R-CNN.
Abstract:Compressed sensing Synthetic Aperture Radar (SAR) image formation, formulated as an inverse problem and solved with traditional iterative optimization methods can be very computationally expensive. We investigate the use of denoising diffusion probabilistic models for compressive SAR image reconstruction, where the diffusion model is guided by a poor initial reconstruction from sub-sampled data obtained via standard imaging methods. We present results on real SAR data and compare our compressively sampled diffusion model reconstruction with standard image reconstruction methods utilizing the full data set, demonstrating the potential performance gains in imaging quality.
Abstract:We present Sparse R-CNN OBB, a novel framework for the detection of oriented objects in SAR images leveraging sparse learnable proposals. The Sparse R-CNN OBB has streamlined architecture and ease of training as it utilizes a sparse set of 300 proposals instead of training a proposals generator on hundreds of thousands of anchors. To the best of our knowledge, Sparse R-CNN OBB is the first to adopt the concept of sparse learnable proposals for the detection of oriented objects, as well as for the detection of ships in Synthetic Aperture Radar (SAR) images. The detection head of the baseline model, Sparse R-CNN, is re-designed to enable the model to capture object orientation. We also fine-tune the model on RSDD-SAR dataset and provide a performance comparison to state-of-the-art models. Experimental results shows that Sparse R-CNN OBB achieves outstanding performance, surpassing other models on both inshore and offshore scenarios. The code is available at: www.github.com/ka-mirul/Sparse-R-CNN-OBB.
Abstract:We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of wind-induced sea elevation and the Kelvin wakes model of a moving ship. Our SAR imaging simulation takes into account frequency-dependent radar parameters, i.e., the complex dielectric constant ($\varepsilon$) and the relaxation rate ($\mu$) of seawater. The former was determined through the Debye model while the latter was estimated for S-band SAR based on pre-existing values for the L, C, and X-bands. The results show good agreement between simulated and real imagery upon visual inspection. The results of implementing different training strategies are also reported, showcasing a notable improvement in accuracy of classifier achieved by integrating real and simulated SAR images during the training.
Abstract:High accuracy coastline/shoreline extraction from SAR imagery is a crucial step in a number of maritime and coastal monitoring applications. We present a method based on image segmentation using the Generalised Gamma Mixture Model superpixel algorithm (MISP-GGD). MISP-GGD produces superpixels adhering with great accuracy to object edges in the image, such as the coastline. Unsupervised clustering of the generated superpixels according to textural and radiometric features allows for generation of a land/water mask from which a highly accurate coastline can be extracted. We present results of our proposed method on a number of SAR images of varying characteristics.
Abstract:Monitoring of ground movement close to the rail corridor, such as that associated with landslips caused by ground subsidence and/or uplift, is of great interest for the detection and prevention of possible railway faults. Interferometric synthetic-aperture radar (InSAR) data can be used to measure ground deformation, but its use poses distinct challenges, as the data is highly sparse and can be particularly noisy. Here we present a scheme for processing and interpolating noisy, sparse InSAR data into a dense spatio-temporal stack, helping suppress noise and opening up the possibility for treatment with deep learning and other image processing methods.
Abstract:In this paper, SAR image reconstruction with joint phase error estimation (autofocusing) is formulated as an inverse problem. An optimization model utilising a sparsity-enforcing Cauchy regularizer is proposed, and an alternating minimization framework is used to solve it, in which the desired image and the phase errors are optimized alternatively. For the image reconstruction sub-problem (f-sub-problem), two methods are presented capable of handling the problem's complex nature, and we thus present two variants of our SAR image autofocusing algorithm. Firstly, we design a complex version of the forward-backward splitting algorithm (CFBA) to solve the f-sub-problem iteratively. For the second variant, the Wirtinger alternating minimization autofocusing (WAMA) method is presented, in which techniques of Wirtinger calculus are utilized to minimize the complex-valued cost function in the f-sub-problem in a direct fashion. For both methods, the phase error estimation sub-problem is solved by simply expanding and observing its cost function. Moreover, the convergence of both algorithms is discussed in detail. By conducting experiments on both simulated scenes and real SAR images, the proposed method is demonstrated to give impressive autofocusing results compared to other state of the art methods.