Abstract:AI research is increasingly moving toward complex problem solving, where models are optimized not only for pattern recognition but for multi-step reasoning. Historically, computing's global energy footprint has been stabilized by sustained efficiency gains and natural saturation thresholds in demand. But as efficiency improvements are approaching physical limits, emerging reasoning AI lacks comparable saturation points: performance is no longer limited by the amount of available training data but continues to scale with exponential compute investments in both training and inference. This paper argues that efficiency alone will not lead to sustainable reasoning AI and discusses research and policy directions to embed explicit limits into the optimization and governance of such systems.
Abstract:Although LLM training is typically centralized with high-bandwidth interconnects and large compute budgets, emerging methods target communication-constrained training in distributed environments. The model trade-offs introduced by this shift remain underexplored, and our goal is to study them. We use the open-source nanochat project, a compact 8K-line full-stack ChatGPT-like implementation containing tokenization, pretraining, fine-tuning, and serving, as a controlled baseline. We implement the DiLoCo algorithm as a lightweight wrapper over nanochat's training loop, performing multiple local steps per worker before synchronization with an outer optimizer, effectively reducing communication by orders of magnitude. This inner-outer training is compared against a standard data-parallel (DDP) setup. Because nanochat is small and inspectable, it enables controlled pipeline adaptations and allows direct comparison with the conventional centralized baseline. DiLoCo achieves stable convergence and competitive loss in pretraining but yields worse MMLU, GSM8K, and HumanEval scores after mid-training and SFT. We discover that using DiLoCo-pretrained weights and running mid- and post-training with DDP fails to recover performance, revealing irreversible representation drift from asynchronous updates that impairs downstream alignment. We provide this implementation as an official fork of nanochat on GitHub.
Abstract:Open set recognition (OSR) is devised to address the problem of detecting novel classes during model inference. Even in recent vision models, this remains an open issue which is receiving increasing attention. Thereby, a crucial challenge is to learn features that are relevant for unseen categories from given data, for which these features might not be discriminative. To facilitate this process and "optimize to learn" more diverse features, we propose GradMix, a data augmentation method that dynamically leverages gradient-based attribution maps of the model during training to mask out already learned concepts. Thus GradMix encourages the model to learn a more complete set of representative features from the same data source. Extensive experiments on open set recognition, close set classification, and out-of-distribution detection reveal that our method can often outperform the state-of-the-art. GradMix can further increase model robustness to corruptions as well as downstream classification performance for self-supervised learning, indicating its benefit for model generalization.
Abstract:The growing capabilities of Artificial Intelligence (AI), particularly Large Language Models (LLMs), prompt a reassessment of the interaction mechanisms between users and their devices. Currently, users are required to use a set of high-level applications to achieve their desired results. However, the advent of AI may signal a shift in this regard, as its capabilities have generated novel prospects for user-provided intent resolution through the deployment of model-generated code, which is tantamount to the generation of workflows comprising a multitude of interdependent steps. This development represents a significant progression in the realm of hybrid workflows, where human and artificial intelligence collaborate to address user intentions, with the former responsible for defining these intentions and the latter for implementing the solutions to address them. In this paper, we investigate the feasibility of generating and executing workflows through code generation that results from prompting an LLM with a concrete user intention, such as \emph{Please send my car title to my insurance company}, and a simplified application programming interface for a GUI-less operating system. We provide in-depth analysis and comparison of various user intentions, the resulting code, and its execution. The findings demonstrate a general feasibility of our approach and that the employed LLM, GPT-4o-mini, exhibits remarkable proficiency in the generation of code-oriented workflows in accordance with provided user intentions.




Abstract:Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $\beta$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $\beta$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $\beta$, modulates the GNN's contribution. This $\beta$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $\beta$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $\beta$-GNN avoids perturbation assumptions, preserving clean data structure and performance.




Abstract:Large-scale datacenters often experience memory failures, where Uncorrectable Errors (UEs) highlight critical malfunction in Dual Inline Memory Modules (DIMMs). Existing approaches primarily utilize Correctable Errors (CEs) to predict UEs, yet they typically neglect how these errors vary between different CPU architectures, especially in terms of Error Correction Code (ECC) applicability. In this paper, we investigate the correlation between CEs and UEs across different CPU architectures, including X86 and ARM. Our analysis identifies unique patterns of memory failure associated with each processor platform. Leveraging Machine Learning (ML) techniques on production datasets, we conduct the memory failure prediction in different processors' platforms, achieving up to 15% improvements in F1-score compared to the existing algorithm. Finally, an MLOps (Machine Learning Operations) framework is provided to consistently improve the failure prediction in the production environment.
Abstract:To assist IT service developers and operators in managing their increasingly complex service landscapes, there is a growing effort to leverage artificial intelligence in operations. To speed up troubleshooting, log anomaly detection has received much attention in particular, dealing with the identification of log events that indicate the reasons for a system failure. However, faults often propagate extensively within systems, which can result in a large number of anomalies being detected by existing approaches. In this case, it can remain very challenging for users to quickly identify the actual root cause of a failure. We propose LogRCA, a novel method for identifying a minimal set of log lines that together describe a root cause. LogRCA uses a semi-supervised learning approach to deal with rare and unknown errors and is designed to handle noisy data. We evaluated our approach on a large-scale production log data set of 44.3 million log lines, which contains 80 failures, whose root causes were labeled by experts. LogRCA consistently outperforms baselines based on deep learning and statistical analysis in terms of precision and recall to detect candidate root causes. In addition, we investigated the impact of our deployed data balancing approach, demonstrating that it considerably improves performance on rare failures.
Abstract:The realm of AIOps is transforming IT landscapes with the power of AI and ML. Despite the challenge of limited labeled data, supervised models show promise, emphasizing the importance of leveraging labels for training, especially in deep learning contexts. This study enhances the field by introducing a taxonomy for log anomalies and exploring automated data labeling to mitigate labeling challenges. It goes further by investigating the potential of diverse anomaly detection techniques and their alignment with specific anomaly types. However, the exploration doesn't stop at anomaly detection. The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies. This uncharted territory holds immense potential for revolutionizing IT systems management. In essence, this paper enriches our understanding of anomaly detection, and automated labeling, and sets the stage for transformative root cause analysis. Together, these advances promise more resilient IT systems, elevating operational efficiency and user satisfaction in an ever-evolving technological landscape.




Abstract:In large-scale datacenters, memory failure is a common cause of server crashes, with Uncorrectable Errors (UEs) being a major indicator of Dual Inline Memory Module (DIMM) defects. Existing approaches primarily focus on predicting UEs using Correctable Errors (CEs), without fully considering the information provided by error bits. However, error bit patterns have a strong correlation with the occurrence of UEs. In this paper, we present a comprehensive study on the correlation between CEs and UEs, specifically emphasizing the importance of spatio-temporal error bit information. Our analysis reveals a strong correlation between spatio-temporal error bits and UE occurrence. Through evaluations using real-world datasets, we demonstrate that our approach significantly improves prediction performance by 15% in F1-score compared to the state-of-the-art algorithms. Overall, our approach effectively reduces the number of virtual machine interruptions caused by UEs by approximately 59%.




Abstract:In most works on deep incremental learning research, it is assumed that novel samples are pre-identified for neural network retraining. However, practical deep classifiers often misidentify these samples, leading to erroneous predictions. Such misclassifications can degrade model performance. Techniques like open set recognition offer a means to detect these novel samples, representing a significant area in the machine learning domain. In this paper, we introduce a deep class-incremental learning framework integrated with open set recognition. Our approach refines class-incrementally learned features to adapt them for distance-based open set recognition. Experimental results validate that our method outperforms state-of-the-art incremental learning techniques and exhibits superior performance in open set recognition compared to baseline methods.