Abstract:We introduce a unified approach to forecast the dynamics of human keypoints along with the motion trajectory based on a short sequence of input poses. While many studies address either full-body pose prediction or motion trajectory prediction, only a few attempt to merge them. We propose a motion transformation technique to simultaneously predict full-body pose and trajectory key-points in a global coordinate frame. We utilize an off-the-shelf 3D human pose estimation module, a graph attention network to encode the skeleton structure, and a compact, non-autoregressive transformer suitable for real-time motion prediction for human-robot interaction and human-aware navigation. We introduce a human navigation dataset ``DARKO'' with specific focus on navigational activities that are relevant for human-aware mobile robot navigation. We perform extensive evaluation on Human3.6M, CMU-Mocap, and our DARKO dataset. In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets. Result animations, our dataset, and code will be available at https://nisarganc.github.io/UPTor-page/
Abstract:Nowadays, unmanned aerial vehicles (UAVs) are commonly used in search and rescue scenarios to gather information in the search area. The automatic identification of the person searched for in aerial footage could increase the autonomy of such systems, reduce the search time, and thus increase the missed person's chances of survival. In this paper, we present a novel approach to perform semantically conditioned open vocabulary object tracking that is specifically designed to cope with the limitations of UAV hardware. Our approach has several advantages. It can run with verbal descriptions of the missing person, e.g., the color of the shirt, it does not require dedicated training to execute the mission and can efficiently track a potentially moving person. Our experimental results demonstrate the versatility and efficacy of our approach.