Abstract:Emotional support conversation (ESC) aims to alleviate distress through empathetic dialogue, yet large language models (LLMs) face persistent challenges in delivering effective ESC due to low accuracy in strategy planning. Moreover, there is a considerable preference bias towards specific strategies. Prior methods using fine-tuned strategy planners have shown potential in reducing such bias, while the underlying causes of the preference bias in LLMs have not well been studied. To address these issues, we first reveal the fundamental causes of the bias by identifying the knowledge boundaries of LLMs in strategy planning. Then, we propose an approach to mitigate the bias by reinforcement learning with a dual reward function, which optimizes strategy planning via both accuracy and entropy-based confidence for each region according to the knowledge boundaries. Experiments on the ESCov and ExTES datasets with multiple LLM backbones show that our approach outperforms the baselines, confirming the effectiveness of our approach.
Abstract:Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.