Member, IEEE
Abstract:Matrix completion is one of the key problems in signal processing and machine learning. In recent years, deep-learning-based models have achieved state-of-the-art results in matrix completion. Nevertheless, they suffer from two drawbacks: (i) they can not be extended easily to rows or columns unseen during training; and (ii) their results are often degraded in case discrete predictions are required. This paper addresses these two drawbacks by presenting a deep matrix factorization model and a generic method to allow joint training of the factorization model and the discretization operator. Experiments on a real movie rating dataset show the efficacy of the proposed models.
Abstract:Inferring air quality from a limited number of observations is an essential task for monitoring and controlling air pollution. Existing inference methods typically use low spatial resolution data collected by fixed monitoring stations and infer the concentration of air pollutants using additional types of data, e.g., meteorological and traffic information. In this work, we focus on street-level air quality inference by utilizing data collected by mobile stations. We formulate air quality inference in this setting as a graph-based matrix completion problem and propose a novel variational model based on graph convolutional autoencoders. Our model captures effectively the spatio-temporal correlation of the measurements and does not depend on the availability of additional information apart from the street-network topology. Experiments on a real air quality dataset, collected with mobile stations, shows that the proposed model outperforms state-of-the-art approaches.
Abstract:Autoencoders are popular among neural-network-based matrix completion models due to their ability to retrieve potential latent factors from the partially observed matrices. Nevertheless, when training data is scarce their performance is significantly degraded due to overfitting. In this paper, we mit- igate overfitting with a data-dependent regularization technique that relies on the principles of multi-task learning. Specifically, we propose an autoencoder-based matrix completion model that performs prediction of the unknown matrix values as a main task, and manifold learning as an auxiliary task. The latter acts as an inductive bias, leading to solutions that generalize better. The proposed model outperforms the existing autoencoder-based models designed for matrix completion, achieving high reconstruction accuracy in well-known datasets.
Abstract:Matrix completion is one of the key problems in signal processing and machine learning, with applications ranging from image pro- cessing and data gathering to classification and recommender sys- tems. Recently, deep neural networks have been proposed as la- tent factor models for matrix completion and have achieved state- of-the-art performance. Nevertheless, a major problem with existing neural-network-based models is their limited capabilities to extend to samples unavailable at the training stage. In this paper, we propose a deep two-branch neural network model for matrix completion. The proposed model not only inherits the predictive power of neural net- works, but is also capable of extending to partially observed samples outside the training set, without the need of retraining or fine-tuning. Experimental studies on popular movie rating datasets prove the ef- fectiveness of our model compared to the state of the art, in terms of both accuracy and extendability.
Abstract:Predicting the geographical location of users on social networks like Twitter is an active research topic with plenty of methods proposed so far. Most of the existing work follows either a content-based or a network-based approach. The former is based on user-generated content while the latter exploits the structure of the network of users. In this paper, we propose a more generic approach, which incorporates not only both content-based and network-based features, but also other available information into a unified model. Our approach, named Multi-Entry Neural Network (MENET), leverages the latest advances in deep learning and multiview learning. A realization of MENET with textual, network and metadata features results in an effective method for Twitter user geolocation, achieving the state of the art on two well-known datasets.
Abstract:Real-world data processing problems often involve various image modalities associated with a certain scene, including RGB images, infrared images or multi-spectral images. The fact that different image modalities often share certain attributes, such as certain edges, textures and other structure primitives, represents an opportunity to enhance various image processing tasks. This paper proposes a new approach to construct a high-resolution (HR) version of a low-resolution (LR) image given another HR image modality as reference, based on joint sparse representations induced by coupled dictionaries. Our approach, which captures the similarities and disparities between different image modalities in a learned sparse feature domain in \emph{lieu} of the original image domain, consists of two phases. The coupled dictionary learning phase is used to learn a set of dictionaries that couple different image modalities in the sparse feature domain given a set of training data. In turn, the coupled super-resolution phase leverages such coupled dictionaries to construct a HR version of the LR target image given another related image modality. One of the merits of our sparsity-driven approach relates to the fact that it overcomes drawbacks such as the texture copying artifacts commonly resulting from inconsistency between the guidance and target images. Experiments on real multimodal images demonstrate that incorporating appropriate guidance information via joint sparse representation induced by coupled dictionary learning brings notable benefits in the super-resolution task with respect to the state-of-the-art. Of particular relevance, the proposed approach also demonstrates better robustness than competing deep-learning-based methods in the presence of noise.
Abstract:We consider a decomposition method for compressive streaming data in the context of online compressive Robust Principle Component Analysis (RPCA). The proposed decomposition solves an $n$-$\ell_1$ cluster-weighted minimization to decompose a sequence of frames (or vectors), into sparse and low-rank components, from compressive measurements. Our method processes a data vector of the stream per time instance from a small number of measurements in contrast to conventional batch RPCA, which needs to access full data. The $n$-$\ell_1$ cluster-weighted minimization leverages the sparse components along with their correlations with multiple previously-recovered sparse vectors. Moreover, the proposed minimization can exploit the structures of sparse components via clustering and re-weighting iteratively. The method outperforms the existing methods for both numerical data and actual video data.
Abstract:The problem of predicting the location of users on large social networks like Twitter has emerged from real-life applications such as social unrest detection and online marketing. Twitter user geolocation is a difficult and active research topic with a vast literature. Most of the proposed methods follow either a content-based or a network-based approach. The former exploits user-generated content while the latter utilizes the connection or interaction between Twitter users. In this paper, we introduce a novel method combining the strength of both approaches. Concretely, we propose a multi-entry neural network architecture named MENET leveraging the advances in deep learning and multiview learning. The generalizability of MENET enables the integration of multiple data representations. In the context of Twitter user geolocation, we realize MENET with textual, network, and metadata features. Considering the natural distribution of Twitter users across the concerned geographical area, we subdivide the surface of the earth into multi-scale cells and train MENET with the labels of the cells. We show that our method outperforms the state of the art by a large margin on three benchmark datasets.
Abstract:Compressed sensing (CS) is a sampling theory that allows reconstruction of sparse (or compressible) signals from an incomplete number of measurements, using of a sensing mechanism implemented by an appropriate projection matrix. The CS theory is based on random Gaussian projection matrices, which satisfy recovery guarantees with high probability; however, sparse ternary {0, -1, +1} projections are more suitable for hardware implementation. In this paper, we present a deep learning approach to obtain very sparse ternary projections for compressed sensing. Our deep learning architecture jointly learns a pair of a projection matrix and a reconstruction operator in an end-to-end fashion. The experimental results on real images demonstrate the effectiveness of the proposed approach compared to state-of-the-art methods, with significant advantage in terms of complexity.
Abstract:We consider an online version of the robust Principle Component Analysis (PCA), which arises naturally in time-varying source separations such as video foreground-background separation. This paper proposes a compressive online robust PCA with prior information for recursively separating a sequences of frames into sparse and low-rank components from a small set of measurements. In contrast to conventional batch-based PCA, which processes all the frames directly, the proposed method processes measurements taken from each frame. Moreover, this method can efficiently incorporate multiple prior information, namely previous reconstructed frames, to improve the separation and thereafter, update the prior information for the next frame. We utilize multiple prior information by solving $n\text{-}\ell_{1}$ minimization for incorporating the previous sparse components and using incremental singular value decomposition ($\mathrm{SVD}$) for exploiting the previous low-rank components. We also establish theoretical bounds on the number of measurements required to guarantee successful separation under assumptions of static or slowly-changing low-rank components. Using numerical experiments, we evaluate our bounds and the performance of the proposed algorithm. In addition, we apply the proposed algorithm to online video foreground and background separation from compressive measurements. Experimental results show that the proposed method outperforms the existing methods.