Abstract:Graph Neural Networks (GNNs) have emerged as an efficient alternative to convolutional approaches for vision tasks such as image classification, leveraging patch-based representations instead of raw pixels. These methods construct graphs where image patches serve as nodes, and edges are established based on patch similarity or classification relevance. Despite their efficiency, the explainability of GNN-based vision models remains underexplored, even though graphs are naturally interpretable. In this work, we analyze the semantic consistency of the graphs formed at different layers of GNN-based image classifiers, focusing on how well they preserve object structures and meaningful relationships. A comprehensive analysis is presented by quantifying the extent to which inter-layer graph connections reflect semantic similarity and spatial coherence. Explanations from standard and adversarial settings are also compared to assess whether they reflect the classifiers' robustness. Additionally, we visualize the flow of information across layers through heatmap-based visualization techniques, thereby highlighting the models' explainability. Our findings demonstrate that the decision-making processes of these models can be effectively explained, while also revealing that their reasoning does not necessarily align with human perception, especially in deeper layers.
Abstract:Multilingual hallucination detection stands as an underexplored challenge, which the Mu-SHROOM shared task seeks to address. In this work, we propose an efficient, training-free LLM prompting strategy that enhances detection by translating multilingual text spans into English. Our approach achieves competitive rankings across multiple languages, securing two first positions in low-resource languages. The consistency of our results highlights the effectiveness of our translation strategy for hallucination detection, demonstrating its applicability regardless of the source language.
Abstract:The absence of well-structured large datasets in medical computer vision results in decreased performance of automated systems and, especially, of deep learning models. Domain generalization techniques aim to approach unknown domains from a single data source. In this paper we introduce a novel framework, named CompStyle, which leverages style transfer and adversarial training, along with high-level input complexity augmentation to effectively expand the domain space and address unknown distributions. State-of-the-art style transfer methods depend on the existence of subdomains within the source dataset. However, this can lead to an inherent dataset bias in the image creation. Input-level augmentation can provide a solution to this problem by widening the domain space in the source dataset and boost performance on out-of-domain distributions. We provide results from experiments on semantic segmentation on prostate data and corruption robustness on cardiac data which demonstrate the effectiveness of our approach. Our method increases performance in both tasks, without added cost to training time or resources.