Abstract:Despite the dominance of convolutional and transformer-based architectures in image-to-image retrieval, these models are prone to biases arising from low-level visual features, such as color. Recognizing the lack of semantic understanding as a key limitation, we propose a novel scene graph-based retrieval framework that emphasizes semantic content over superficial image characteristics. Prior approaches to scene graph retrieval predominantly rely on supervised Graph Neural Networks (GNNs), which require ground truth graph pairs driven from image captions. However, the inconsistency of caption-based supervision stemming from variable text encodings undermine retrieval reliability. To address these, we present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework, which eliminates the dependence on labeled training data. Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches. We further advocate for Graph Edit Distance (GED) as a deterministic and robust ground truth measure for scene graph similarity, replacing the inconsistent caption-based alternatives for the first time in image-to-image retrieval evaluation. Finally, we validate the generalizability of our method by applying it to unannotated datasets via automated scene graph generation, while substantially contributing in advancing state-of-the-art in counterfactual image retrieval.
Abstract:Graph Neural Networks (GNNs) have emerged as an efficient alternative to convolutional approaches for vision tasks such as image classification, leveraging patch-based representations instead of raw pixels. These methods construct graphs where image patches serve as nodes, and edges are established based on patch similarity or classification relevance. Despite their efficiency, the explainability of GNN-based vision models remains underexplored, even though graphs are naturally interpretable. In this work, we analyze the semantic consistency of the graphs formed at different layers of GNN-based image classifiers, focusing on how well they preserve object structures and meaningful relationships. A comprehensive analysis is presented by quantifying the extent to which inter-layer graph connections reflect semantic similarity and spatial coherence. Explanations from standard and adversarial settings are also compared to assess whether they reflect the classifiers' robustness. Additionally, we visualize the flow of information across layers through heatmap-based visualization techniques, thereby highlighting the models' explainability. Our findings demonstrate that the decision-making processes of these models can be effectively explained, while also revealing that their reasoning does not necessarily align with human perception, especially in deeper layers.
Abstract:The advent of Large Language Models (LLMs) has revolutionized product recommendation systems, yet their susceptibility to adversarial manipulation poses critical challenges, particularly in real-world commercial applications. Our approach is the first one to tap into human psychological principles, seamlessly modifying product descriptions, making these adversarial manipulations hard to detect. In this work, we investigate cognitive biases as black-box adversarial strategies, drawing parallels between their effects on LLMs and human purchasing behavior. Through extensive experiments on LLMs of varying scales, we reveal significant vulnerabilities in their use as recommenders, providing critical insights into safeguarding these systems.
Abstract:Despite the rapid evolution and increasing efficacy of language and vision generative models, there remains a lack of comprehensive datasets that bridge the gap between personalized fashion needs and AI-driven design, limiting the potential for truly inclusive and customized fashion solutions. In this work, we leverage generative models to automatically construct a fashion image dataset tailored to various occasions, styles, and body types as instructed by users. We use different Large Language Models (LLMs) and prompting strategies to offer personalized outfits of high aesthetic quality, detail, and relevance to both expert and non-expert users' requirements, as demonstrated by qualitative analysis. Up until now the evaluation of the generated outfits has been conducted by non-expert human subjects. Despite the provided fine-grained insights on the quality and relevance of generation, we extend the discussion on the importance of expert knowledge for the evaluation of artistic AI-generated datasets such as this one. Our dataset is publicly available on GitHub at https://github.com/georgiarg/Prompt2Fashion.
Abstract:The advent of artificial intelligence has contributed in a groundbreaking transformation of the fashion industry, redefining creativity and innovation in unprecedented ways. This work investigates methodologies for generating tailored fashion descriptions using two distinct Large Language Models and a Stable Diffusion model for fashion image creation. Emphasizing adaptability in AI-driven fashion creativity, we depart from traditional approaches and focus on prompting techniques, such as zero-shot and few-shot learning, as well as Chain-of-Thought (CoT), which results in a variety of colors and textures, enhancing the diversity of the outputs. Central to our methodology is Retrieval-Augmented Generation (RAG), enriching models with insights from fashion sources to ensure contemporary representations. Evaluation combines quantitative metrics such as CLIPscore with qualitative human judgment, highlighting strengths in creativity, coherence, and aesthetic appeal across diverse styles. Among the participants, RAG and few-shot learning techniques are preferred for their ability to produce more relevant and appealing fashion descriptions. Our code is provided at https://github.com/georgiarg/AutoFashion.
Abstract:Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to particular model predictions. In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations. Building upon state-of-the-art (SoTA) conceptual attempts, we adopt a model-agnostic edit-based approach and introduce leveraging GNNs for efficient Graph Edit Distance (GED) computation. With a focus on the visual domain, we represent images as scene graphs and obtain their GNN embeddings to bypass solving the NP-hard graph similarity problem for all input pairs, an integral part of the CE computation process. We apply our method to benchmark and real-world datasets with varying difficulty and availability of semantic annotations. Testing on diverse classifiers, we find that our CEs outperform previous SoTA explanation models based on semantics, including both white and black-box as well as conceptual and pixel-level approaches. Their superiority is proven quantitatively and qualitatively, as validated by human subjects, highlighting the significance of leveraging semantic edges in the presence of intricate relationships. Our model-agnostic graph-based approach is widely applicable and easily extensible, producing actionable explanations across different contexts.
Abstract:Counterfactuals have been established as a popular explainability technique which leverages a set of minimal edits to alter the prediction of a classifier. When considering conceptual counterfactuals, the edits requested should correspond to salient concepts present in the input data. At the same time, conceptual distances are defined by knowledge graphs, ensuring the optimality of conceptual edits. In this work, we extend previous endeavors on conceptual counterfactuals by introducing \textit{graph edits as counterfactual explanations}: should we represent input data as graphs, which is the shortest graph edit path that results in an alternative classification label as provided by a black-box classifier?