Abstract:Imitation learning often assumes that demonstrations are close to optimal according to some fixed, but unknown, cost function. However, according to satisficing theory, humans often choose acceptable behavior based on their personal (and potentially dynamic) levels of aspiration, rather than achieving (near-) optimality. For example, a lunar lander demonstration that successfully lands without crashing might be acceptable to a novice despite being slow or jerky. Using a margin-based objective to guide deep reinforcement learning, our focused satisficing approach to imitation learning seeks a policy that surpasses the demonstrator's aspiration levels -- defined over trajectories or portions of trajectories -- on unseen demonstrations without explicitly learning those aspirations. We show experimentally that this focuses the policy to imitate the highest quality (portions of) demonstrations better than existing imitation learning methods, providing much higher rates of guaranteed acceptability to the demonstrator, and competitive true returns on a range of environments.
Abstract:Health coaching helps patients achieve personalized and lifestyle-related goals, effectively managing chronic conditions and alleviating mental health issues. It is particularly beneficial, however cost-prohibitive, for low-socioeconomic status populations due to its highly personalized and labor-intensive nature. In this paper, we propose a neuro-symbolic goal summarizer to support health coaches in keeping track of the goals and a text-units-text dialogue generation model that converses with patients and helps them create and accomplish specific goals for physical activities. Our models outperform previous state-of-the-art while eliminating the need for predefined schema and corresponding annotation. We also propose a new health coaching dataset extending previous work and a metric to measure the unconventionality of the patient's response based on data difficulty, facilitating potential coach alerts during deployment.
Abstract:Health coaching helps patients identify and accomplish lifestyle-related goals, effectively improving the control of chronic diseases and mitigating mental health conditions. However, health coaching is cost-prohibitive due to its highly personalized and labor-intensive nature. In this paper, we propose to build a dialogue system that converses with the patients, helps them create and accomplish specific goals, and can address their emotions with empathy. However, building such a system is challenging since real-world health coaching datasets are limited and empathy is subtle. Thus, we propose a modularized health coaching dialogue system with simplified NLU and NLG frameworks combined with mechanism-conditioned empathetic response generation. Through automatic and human evaluation, we show that our system generates more empathetic, fluent, and coherent responses and outperforms the state-of-the-art in NLU tasks while requiring less annotation. We view our approach as a key step towards building automated and more accessible health coaching systems.