Alert button
Picture for Niklas Wulms

Niklas Wulms

Alert button

Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks

Mar 22, 2021
Lukas Fisch, Jan Ernsting, Nils R. Winter, Vincent Holstein, Ramona Leenings, Marie Beisemann, Kelvin Sarink, Daniel Emden, Nils Opel, Ronny Redlich, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, Niklas Wulms, Heike Minnerup, Jochen G. Hirsch, Thoralf Niendorf, Beate Endemann, Fabian Bamberg, Thomas Kröncke, Annette Peters, Robin Bülow, Henry Völzke, Oyunbileg von Stackelberg, Ramona Felizitas Sowade, Lale Umutlu, Börge Schmidt, Svenja Caspers, German National Cohort Study Center Consortium, Harald Kugel, Bernhard T. Baune, Tilo Kircher, Benjamin Risse, Udo Dannlowski, Klaus Berger, Tim Hahn

Figure 1 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 2 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 3 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 4 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks

Age prediction based on Magnetic Resonance Imaging (MRI) data of the brain is a biomarker to quantify the progress of brain diseases and aging. Current approaches rely on preparing the data with multiple preprocessing steps, such as registering voxels to a standardized brain atlas, which yields a significant computational overhead, hampers widespread usage and results in the predicted brain-age to be sensitive to preprocessing parameters. Here we describe a 3D Convolutional Neural Network (CNN) based on the ResNet architecture being trained on raw, non-registered T$_ 1$-weighted MRI data of N=10,691 samples from the German National Cohort and additionally applied and validated in N=2,173 samples from three independent studies using transfer learning. For comparison, state-of-the-art models using preprocessed neuroimaging data are trained and validated on the same samples. The 3D CNN using raw neuroimaging data predicts age with a mean average deviation of 2.84 years, outperforming the state-of-the-art brain-age models using preprocessed data. Since our approach is invariant to preprocessing software and parameter choices, it enables faster, more robust and more accurate brain-age modeling.

Viaarxiv icon