Abstract:As generative AI becomes embedded in higher education, it increasingly shapes how students complete academic tasks. While these systems offer efficiency and support, concerns persist regarding over-automation, diminished student agency, and the potential for unreliable or hallucinated outputs. This study conducts a mixed-methods audit of student-AI collaboration preferences by examining the alignment between current AI capabilities and students' desired levels of automation in academic work. Using two sequential and complementary surveys, we capture students' perceived benefits, risks, and preferred boundaries when using AI. The first survey employs an existing task-based framework to assess preferences for and actual usage of AI across 12 academic tasks, alongside primary concerns and reasons for use. The second survey, informed by the first, explores how AI systems could be designed to address these concerns through open-ended questions. This study aims to identify gaps between existing AI affordances and students' normative expectations of collaboration, informing the development of more effective and trustworthy AI systems for education.
Abstract:Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.