Abstract:We present the scalable design of an entire on-device system for large-scale urban localization. The proposed design integrates compact image retrieval and 2D-3D correspondence search to estimate the camera pose in a city region of extensive coverage. Our design is GPS agnostic and does not require the network connection. The system explores the use of an abundant dataset: Google Street View (GSV). In order to overcome the resource constraints of mobile devices, we carefully optimize the system design at every stage: we use state-of-the-art image retrieval to quickly locate candidate regions and limit candidate 3D points; we propose a new hashing-based approach for fast computation of 2D-3D correspondences and new one-many RANSAC for accurate pose estimation. The experiments are conducted on benchmark datasets for 2D-3D correspondence search and on a database of over 227K Google Street View (GSV) images for the overall system. Results show that our 2D-3D correspondence search achieves state-of-the-art performance on some benchmark datasets and our system can accurately and quickly localize mobile images; the median error is less than 4 meters and the processing time is averagely less than 10s on a typical mobile device.
Abstract:In this work, we firstly propose deep network models and learning algorithms for learning binary hash codes given image representations under both unsupervised and supervised manners. Then, by leveraging the powerful capacity of convolutional neural networks, we propose an end-to-end architecture which jointly learns to extract visual features and produce binary hash codes. Our novel network designs constrain one hidden layer to directly output the binary codes. This addresses a challenging issue in some previous works: optimizing nonsmooth objective functions due to binarization. Additionally, we incorporate independence and balance properties in the direct and strict forms into the learning schemes. Furthermore, we also include similarity preserving property in our objective functions. Our resulting optimizations involving these binary, independence, and balance constraints are difficult to solve. We propose to attack them with alternating optimization and careful relaxation. Experimental results on the benchmark datasets show that our proposed methods compare favorably with the state of the art.
Abstract:To ensure flight safety of aircraft structures, it is necessary to have regular maintenance using visual and nondestructive inspection (NDI) methods. In this paper, we propose an automatic image-based aircraft defect detection using Deep Neural Networks (DNNs). To the best of our knowledge, this is the first work for aircraft defect detection using DNNs. We perform a comprehensive evaluation of state-of-the-art feature descriptors and show that the best performance is achieved by vgg-f DNN as feature extractor with a linear SVM classifier. To reduce the processing time, we propose to apply SURF key point detector to identify defect patch candidates. Our experiment results suggest that we can achieve over 96% accuracy at around 15s processing time for a high-resolution (20-megapixel) image on a laptop.
Abstract:In recent years Deep Neural Networks (DNNs) have been rapidly developed in various applications, together with increasingly complex architectures. The performance gain of these DNNs generally comes with high computational costs and large memory consumption, which may not be affordable for mobile platforms. Deep model quantization can be used for reducing the computation and memory costs of DNNs, and deploying complex DNNs on mobile equipment. In this work, we propose an optimization framework for deep model quantization. First, we propose a measurement to estimate the effect of parameter quantization errors in individual layers on the overall model prediction accuracy. Then, we propose an optimization process based on this measurement for finding optimal quantization bit-width for each layer. This is the first work that theoretically analyse the relationship between parameter quantization errors of individual layers and model accuracy. Our new quantization algorithm outperforms previous quantization optimization methods, and achieves 20-40% higher compression rate compared to equal bit-width quantization at the same model prediction accuracy.
Abstract:Convolutional Neural Network (CNN) is a very powerful approach to extract discriminative local descriptors for effective image search. Recent work adopts fine-tuned strategies to further improve the discriminative power of the descriptors. Taking a different approach, in this paper, we propose a novel framework to achieve competitive retrieval performance. Firstly, we propose various masking schemes, namely SIFT-mask, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and remove a large number of redundant features. We demonstrate that this can effectively address the burstiness issue and improve retrieval accuracy. Secondly, we propose to employ recent embedding and aggregating methods to further enhance feature discriminability. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art retrieval accuracy.
Abstract:We introduce a novel approach to improve unsupervised hashing. Specifically, we propose a very efficient embedding method: Gaussian Mixture Model embedding (Gemb). The proposed method, using Gaussian Mixture Model, embeds feature vector into a low-dimensional vector and, simultaneously, enhances the discriminative property of features before passing them into hashing. Our experiment shows that the proposed method boosts the hashing performance of many state-of-the-art, e.g. Binary Autoencoder (BA) [1], Iterative Quantization (ITQ) [2], in standard evaluation metrics for the three main benchmark datasets.
Abstract:Brain imaging data such as EEG or MEG are high-dimensional spatiotemporal data often degraded by complex, non-Gaussian noise. For reliable analysis of brain imaging data, it is important to extract discriminative, low-dimensional intrinsic representation of the recorded data. This work proposes a new method to learn the low-dimensional representations from the noise-degraded measurements. In particular, our work proposes a new deep neural network design that integrates graph information such as brain connectivity with fully-connected layers. Our work leverages efficient graph filter design using Chebyshev polynomial and recent work on convolutional nets on graph-structured data. Our approach exploits graph structure as the prior side information, localized graph filter for feature extraction and neural networks for high capacity learning. Experiments on real MEG datasets show that our approach can extract more discriminative representations, leading to improved accuracy in a supervised classification task.
Abstract:In most state-of-the-art hashing-based visual search systems, local image descriptors of an image are first aggregated as a single feature vector. This feature vector is then subjected to a hashing function that produces a binary hash code. In previous work, the aggregating and the hashing processes are designed independently. In this paper, we propose a novel framework where feature aggregating and hashing are designed simultaneously and optimized jointly. Specifically, our joint optimization produces aggregated representations that can be better reconstructed by some binary codes. This leads to more discriminative binary hash codes and improved retrieval accuracy. In addition, we also propose a fast version of the recently-proposed Binary Autoencoder to be used in our proposed framework. We perform extensive retrieval experiments on several benchmark datasets with both SIFT and convolutional features. Our results suggest that the proposed framework achieves significant improvements over the state of the art.
Abstract:The objective of this paper is to design an embedding method that maps local features describing an image (e.g. SIFT) to a higher dimensional representation useful for the image retrieval problem. First, motivated by the relationship between the linear approximation of a nonlinear function in high dimensional space and the stateof-the-art feature representation used in image retrieval, i.e., VLAD, we propose a new approach for the approximation. The embedded vectors resulted by the function approximation process are then aggregated to form a single representation for image retrieval. Second, in order to make the proposed embedding method applicable to large scale problem, we further derive its fast version in which the embedded vectors can be efficiently computed, i.e., in the closed-form. We compare the proposed embedding methods with the state of the art in the context of image search under various settings: when the images are represented by medium length vectors, short vectors, or binary vectors. The experimental results show that the proposed embedding methods outperform existing the state of the art on the standard public image retrieval benchmarks.
Abstract:We propose an algorithm to uncover the intrinsic low-rank component of a high-dimensional, graph-smooth and grossly-corrupted dataset, under the situations that the underlying graph is unknown. Based on a model with a low-rank component plus a sparse perturbation, and an initial graph estimation, our proposed algorithm simultaneously learns the low-rank component and refines the graph. Our evaluations using synthetic and real brain imaging data in unsupervised and supervised classification tasks demonstrate encouraging performance.