Abstract:Large language models (LLMs) increasingly serve as automated evaluators, yet they suffer from "self-preference bias": a tendency to favor their own outputs over those of other models. This bias undermines fairness and reliability in evaluation pipelines, particularly for tasks like preference tuning and model routing. We investigate whether lightweight steering vectors can mitigate this problem at inference time without retraining. We introduce a curated dataset that distinguishes self-preference bias into justified examples of self-preference and unjustified examples of self-preference, and we construct steering vectors using two methods: Contrastive Activation Addition (CAA) and an optimization-based approach. Our results show that steering vectors can reduce unjustified self-preference bias by up to 97\%, substantially outperforming prompting and direct preference optimization baselines. Yet steering vectors are unstable on legitimate self-preference and unbiased agreement, implying self-preference spans multiple or nonlinear directions. This underscores both their promise and limits as safeguards for LLM-as-judges and motivates more robust interventions.
Abstract:Controlling multiple behavioral attributes in large language models (LLMs) at inference time is a challenging problem due to interference between attributes and the limitations of linear steering methods, which assume additive behavior in activation space and require per-attribute tuning. We introduce K-Steering, a unified and flexible approach that trains a single non-linear multi-label classifier on hidden activations and computes intervention directions via gradients at inference time. This avoids linearity assumptions, removes the need for storing and tuning separate attribute vectors, and allows dynamic composition of behaviors without retraining. To evaluate our method, we propose two new benchmarks, ToneBank and DebateMix, targeting compositional behavioral control. Empirical results across 3 model families, validated by both activation-based classifiers and LLM-based judges, demonstrate that K-Steering outperforms strong baselines in accurately steering multiple behaviors.
Abstract:The study of representation universality in AI models reveals growing convergence across domains, modalities, and architectures. However, the practical applications of representation universality remain largely unexplored. We bridge this gap by demonstrating that safety interventions can be transferred between models through learned mappings of their shared activation spaces. We demonstrate this approach on two well-established AI safety tasks: backdoor removal and refusal of harmful prompts, showing successful transfer of steering vectors that alter the models' outputs in a predictable way. Additionally, we propose a new task, \textit{corrupted capabilities}, where models are fine-tuned to embed knowledge tied to a backdoor. This tests their ability to separate useful skills from backdoors, reflecting real-world challenges. Extensive experiments across Llama, Qwen and Gemma model families show that our method enables using smaller models to efficiently align larger ones. Furthermore, we demonstrate that autoencoder mappings between base and fine-tuned models can serve as reliable ``lightweight safety switches", allowing dynamic toggling between model behaviors.
Abstract:Efforts to interpret reinforcement learning (RL) models often rely on high-level techniques such as attribution or probing, which provide only correlational insights and coarse causal control. This work proposes replacing nonlinearities in convolutional neural networks (ConvNets) with bilinear variants, to produce a class of models for which these limitations can be addressed. We show bilinear model variants perform comparably in model-free reinforcement learning settings, and give a side by side comparison on ProcGen environments. Bilinear layers' analytic structure enables weight-based decomposition. Previous work has shown bilinearity enables quantifying functional importance through eigendecomposition, to identify interpretable low rank structure. We show how to adapt the decomposition to convolution layers by applying singular value decomposition to vectors of interest, to separate the channel and spatial dimensions. Finally, we propose a methodology for causally validating concept-based probes, and illustrate its utility by studying a maze-solving agent's ability to track a cheese object.