Abstract:Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.
Abstract:The rise in cybercrime and the complexity of multilingual and code-mixed complaints present significant challenges for law enforcement and cybersecurity agencies. These organizations need automated, scalable methods to identify crime types, enabling efficient processing and prioritization of large complaint volumes. Manual triaging is inefficient, and traditional machine learning methods fail to capture the semantic and contextual nuances of textual cybercrime complaints. Moreover, the lack of publicly available datasets and privacy concerns hinder the research to present robust solutions. To address these challenges, we propose a framework for automated cybercrime complaint classification. The framework leverages Hinglish-adapted transformers, such as HingBERT and HingRoBERTa, to handle code-mixed inputs effectively. We employ the real-world dataset provided by Indian Cybercrime Coordination Centre (I4C) during CyberGuard AI Hackathon 2024. We employ GenAI open source model-based data augmentation method to address class imbalance. We also employ privacy-aware preprocessing to ensure compliance with ethical standards while maintaining data integrity. Our solution achieves significant performance improvements, with HingRoBERTa attaining an accuracy of 74.41% and an F1-score of 71.49%. We also develop ready-to-use tool by integrating Django REST backend with a modern frontend. The developed tool is scalable and ready for real-world deployment in platforms like the National Cyber Crime Reporting Portal. This work bridges critical gaps in cybercrime complaint management, offering a scalable, privacy-conscious, and adaptable solution for modern cybersecurity challenges.