Abstract:With the development of technology, the usage areas and importance of biometric systems have started to increase. Since the characteristics of each person are different from each other, a single model biometric system can yield successful results. However, because the characteristics of twin people are very close to each other, multiple biometric systems including multiple characteristics of individuals will be more appropriate and will increase the recognition rate. In this study, a multiple biometric recognition system consisting of a combination of multiple algorithms and multiple models was developed to distinguish people from other people and their twins. Ear and voice biometric data were used for the multimodal model and 38 pair of twin ear images and sound recordings were used in the data set. Sound and ear recognition rates were obtained using classical (hand-crafted) and deep learning algorithms. The results obtained were combined with the hierarchical score level fusion method to achieve a success rate of 94.74% in rank-1 and 100% in rank -2.
Abstract:With the development of technology, the usage areas and importance of biometric systems have started to increase. Since the characteristics of each person are different from each other, a single model biometric system can yield successful results. However, because the characteristics of twin people are very close to each other, multiple biometric systems including multiple characteristics of individuals will be more appropriate and will increase the recognition rate. In this study, a multiple biometric recognition system consisting of a combination of multiple algorithms and multiple models was developed to distinguish people from other people and their twins. Ear and voice biometric data were used for the multimodal model and 38 pair of twin ear images and sound recordings were used in the data set. Sound and ear recognition rates were obtained using classical (hand-crafted) and deep learning algorithms. The results obtained were combined with the score level fusion method to achieve a success rate of 94.74% in rank-1 and 100% in rank -2.
Abstract:This paper presents a summary of the 2019 Unconstrained Ear Recognition Challenge (UERC), the second in a series of group benchmarking efforts centered around the problem of person recognition from ear images captured in uncontrolled settings. The goal of the challenge is to assess the performance of existing ear recognition techniques on a challenging large-scale ear dataset and to analyze performance of the technology from various viewpoints, such as generalization abilities to unseen data characteristics, sensitivity to rotations, occlusions and image resolution and performance bias on sub-groups of subjects, selected based on demographic criteria, i.e. gender and ethnicity. Research groups from 12 institutions entered the competition and submitted a total of 13 recognition approaches ranging from descriptor-based methods to deep-learning models. The majority of submissions focused on ensemble based methods combining either representations from multiple deep models or hand-crafted with learned image descriptors. Our analysis shows that methods incorporating deep learning models clearly outperform techniques relying solely on hand-crafted descriptors, even though both groups of techniques exhibit similar behaviour when it comes to robustness to various covariates, such presence of occlusions, changes in (head) pose, or variability in image resolution. The results of the challenge also show that there has been considerable progress since the first UERC in 2017, but that there is still ample room for further research in this area.
Abstract:The development of technology biometrics becomes crucial more. To define human characteristic biometric systems are used but because of inability of traditional biometric systems to recognize twins, multimodal biometric systems are developed. In this study a multimodal biometric recognition system is proposed to recognize twins from each other and from the other people by using image and speech data. The speech or image data can be enough to recognize people from each other but twins cannot be distinguished with one of these data. Therefore a robust recognition system with the combine of speech and ear images is needed. As database, the photos and speech data of 39 twins are used. For speech recognition MFCC and DTW algorithms are used. Also, Gabor filter and DCVA algorithms are used for ear identification. Multi-biometrics success rate is increased by making matching score level fusion. Especially, rank-5 is reached 100%. We think that speech and ear can be complementary. Therefore, it is result that multi-biometrics based speech and ear is effective for human identifications.
Abstract:Only a few studies have been reported regarding human ear recognition in long wave infrared band. Thus, we have created ear database based on long wave infrared band. We have called that the database is long wave infrared band MIDAS consisting of 2430 records of 81 subjects. Thermal band provides seamless operation both night and day, robust against spoofing with understanding live ear and invariant to illumination conditions for human ear recognition. We have proposed to use different algorithms to reveal the distinctive features. Then, we have reduced the number of dimensions using subspace methods. Finally, the dimension of data is reduced in accordance with the classifier methods. After this, the decision is determined by the best sores or combining some of the best scores with matching fusion. The results have showed that the fusion technique was successful. We have reached 97.71% for rank-1 with 567 test probes. Furthermore, we have defined the perfect rank which is rank number when recognition rate reaches 100% in cumulative matching curve. This evaluation is important for especially forensics, for example corpse identification, criminal investigation etc.