Abstract:Our research is focused on two main applications of crowd scene analysis crowd counting and anomaly detection In recent years a large number of researches have been presented in the domain of crowd counting We addressed two main challenges in this domain 1 Deep learning models are datahungry paradigms and always need a large amount of annotated data for the training of algorithm It is timeconsuming and costly task to annotate such large amount of data Selfsupervised training is proposed to deal with this challenge 2 MCNN consists of multicolumns of CNN with different sizes of filters by presenting a novel approach based on a combination of selfsupervised training and MultiColumn CNN This enables the model to learn features at different levels and makes it effective in dealing with challenges of occluded scenes nonuniform density complex backgrounds and scale invariation The proposed model was evaluated on publicly available data sets such as ShanghaiTech and UCFQNRF by means of MAE and MSE A spatiotemporal model based on VGG19 is proposed for crowd anomaly detection addressing challenges like lighting environmental conditions unexpected objects and scalability The model extracts spatial and temporal features allowing it to be generalized to realworld scenes Spatial features are learned using CNN while temporal features are learned using LSTM blocks The model works on binary classification and can detect normal or abnormal behavior The models performance is improved by replacing fully connected layers with dense residual blocks Experiments on the Hockey Fight dataset and SCVD dataset show our models outperform other stateoftheart approaches
Abstract:Rice is an essential staple food worldwide that is important in promoting international trade, economic growth, and nutrition. Asian countries such as China, India, Pakistan, Thailand, Vietnam, and Indonesia are notable for their significant contribution to the cultivation and utilization of rice. These nations are also known for cultivating different rice grains, including short and long grains. These sizes are further classified as basmati, jasmine, kainat saila, ipsala, arborio, etc., catering to diverse culinary preferences and cultural traditions. For both local and international trade, inspecting and maintaining the quality of rice grains to satisfy customers and preserve a country's reputation is necessary. Manual quality check and classification is quite a laborious and time-consuming process. It is also highly prone to mistakes. Therefore, an automatic solution must be proposed for the effective and efficient classification of different varieties of rice grains. This research paper presents an automatic framework based on a convolutional neural network (CNN) for classifying different varieties of rice grains. We evaluated the proposed model based on performance metrics such as accuracy, recall, precision, and F1-Score. The CNN model underwent rigorous training and validation, achieving a remarkable accuracy rate and a perfect area under each class's Receiver Operating Characteristic (ROC) curve. The confusion matrix analysis confirmed the model's effectiveness in distinguishing between the different rice varieties, indicating minimal misclassifications. Additionally, the integration of explainability techniques such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) provided valuable insights into the model's decision-making process, revealing how specific features of the rice grains influenced classification outcomes.