Abstract:Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.
Abstract:In the recent years cyberattacks to smart grids are becoming more frequent Among the many malicious activities that can be launched against smart grids False Data Injection FDI attacks have raised significant concerns from both academia and industry FDI attacks can affect the internal state estimation processcritical for smart grid monitoring and controlthus being able to bypass conventional Bad Data Detection BDD methods Hence prompt detection and precise localization of FDI attacks is becomming of paramount importance to ensure smart grids security and safety Several papers recently started to study and analyze this topic from different perspectives and address existing challenges Datadriven techniques and mathematical modelings are the major ingredients of the proposed approaches The primary objective of this work is to provide a systematic review and insights into FDI attacks joint detection and localization approaches considering that other surveys mainly concentrated on the detection aspects without detailed coverage of localization aspects For this purpose we select and inspect more than forty major research contributions while conducting a detailed analysis of their methodology and objectives in relation to the FDI attacks detection and localization We provide our key findings of the identified papers according to different criteria such as employed FDI attacks localization techniques utilized evaluation scenarios investigated FDI attack types application scenarios adopted methodologies and the use of additional data Finally we discuss open issues and future research directions