Abstract:This paper presents a joint framework that integrates reconfigurable intelligent surfaces (RISs) with Terahertz (THz) communications and non-orthogonal multiple access (NOMA) to enhance smart industrial communications. The proposed system leverages the advantages of RIS and THz bands to improve spectral efficiency, coverage, and reliability key requirements for industrial automation and real-time communications in future 6G networks and beyond. Within this framework, two power allocation strategies are investigated: the first optimally distributes power between near and far industrial nodes, and the second prioritizes network demands to enhance system performance further. A performance evaluation is conducted to compare the sum rate and outage probability against a fixed power allocation scheme. Our scheme achieves up to a 23% sum rate gain over fixed PA at 30 dBm. Simulation results validate the theoretical analysis, demonstrating the effectiveness and robustness of the RIS-assisted NOMA MIMO framework for THz enabled industrial communications.
Abstract:This work explores the deployment of active reconfigurable intelligent surfaces (A-RIS) in integrated terrestrial and non-terrestrial networks (TN-NTN) while utilizing coordinated multipoint non-orthogonal multiple access (CoMP-NOMA). Our system model incorporates a UAV-assisted RIS in coordination with a terrestrial RIS which aims for signal enhancement. We aim to maximize the sum rate for all users in the network using a custom hybrid proximal policy optimization (H-PPO) algorithm by optimizing the UAV trajectory, base station (BS) power allocation factors, active RIS amplification factor, and phase shift matrix. We integrate edge users into NOMA pairs to achieve diversity gain, further enhancing the overall experience for edge users. Exhaustive comparisons are made with passive RIS-assisted networks to demonstrate the superior efficacy of active RIS in terms of energy efficiency, outage probability, and network sum rate.