Abstract:This paper presents our system for Track 1: Mistake Identification in the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors. The task involves evaluating whether a tutor's response correctly identifies a mistake in a student's mathematical reasoning. We explore four approaches: (1) an ensemble of machine learning models over pooled token embeddings from multiple pretrained language models (LMs); (2) a frozen sentence-transformer using [CLS] embeddings with an MLP classifier; (3) a history-aware model with multi-head attention between token-level history and response embeddings; and (4) a retrieval-augmented few-shot prompting system with a large language model (LLM) i.e. GPT 4o. Our final system retrieves semantically similar examples, constructs structured prompts, and uses schema-guided output parsing to produce interpretable predictions. It outperforms all baselines, demonstrating the effectiveness of combining example-driven prompting with LLM reasoning for pedagogical feedback assessment. Our code is available at https://github.com/NaumanNaeem/BEA_2025.
Abstract:The rapid use of large language models (LLMs) has raised critical concerns regarding the factual reliability of their outputs, especially in low-resource languages such as Urdu. Existing automated fact-checking solutions overwhelmingly focus on English, leaving a significant gap for the 200+ million Urdu speakers worldwide. In this work, we introduce UrduFactCheck, the first comprehensive, modular fact-checking framework specifically tailored for Urdu. Our system features a dynamic, multi-strategy evidence retrieval pipeline that combines monolingual and translation-based approaches to address the scarcity of high-quality Urdu evidence. We curate and release two new hand-annotated benchmarks: UrduFactBench for claim verification and UrduFactQA for evaluating LLM factuality. Extensive experiments demonstrate that UrduFactCheck, particularly its translation-augmented variants, consistently outperforms baselines and open-source alternatives on multiple metrics. We further benchmark twelve state-of-the-art (SOTA) LLMs on factual question answering in Urdu, highlighting persistent gaps between proprietary and open-source models. UrduFactCheck's code and datasets are open-sourced and publicly available at https://github.com/mbzuai-nlp/UrduFactCheck.