Abstract:Connected autonomous vehicles (CAVs) rely on vision-based deep neural networks (DNNs) and low-latency (Vehicle-to-Everything) V2X communication to navigate safely and efficiently. Despite their advances, these systems remain vulnerable to physical adversarial attacks. In this paper, we introduce PHANTOM (PHysical ANamorphic Threats Obstructing connected vehicle Mobility), a novel framework for crafting and deploying perspective-dependent adversarial examples using \textit{anamorphic art}. PHANTOM exploits geometric distortions that appear natural to humans but are misclassified with high confidence by state-of-the-art object detectors. Unlike conventional attacks, PHANTOM operates in black-box settings without model access and demonstrates strong transferability across four diverse detector architectures (YOLOv5, SSD, Faster R-CNN, and RetinaNet). Comprehensive evaluation in CARLA across varying speeds, weather conditions, and lighting scenarios shows that PHANTOM achieves over 90\% attack success rate under optimal conditions and maintains 60-80\% effectiveness even in degraded environments. The attack activates within 6-10 meters of the target, providing insufficient time for safe maneuvering. Beyond individual vehicle deception, PHANTOM triggers network-wide disruption in CAV systems: SUMO-OMNeT++ co-simulation demonstrates that false emergency messages propagate through V2X links, increasing Peak Age of Information by 68-89\% and degrading safety-critical communication. These findings expose critical vulnerabilities in both perception and communication layers of CAV ecosystems.
Abstract:Federated Learning (FL) enables collaborative model training across distributed devices while safeguarding data and user privacy. However, FL remains susceptible to privacy threats that can compromise data via direct means. That said, indirectly compromising the confidentiality of the FL model architecture (e.g., a convolutional neural network (CNN) or a recurrent neural network (RNN)) on a client device by an outsider remains unexplored. If leaked, this information can enable next-level attacks tailored to the architecture. This paper proposes a novel side-channel fingerprinting attack, leveraging flow-level and packet-level statistics of encrypted wireless traffic from an FL client to infer its deep learning model architecture. We name it FLARE, a fingerprinting framework based on FL Architecture REconnaissance. Evaluation across various CNN and RNN variants-including pre-trained and custom models trained over IEEE 802.11 Wi-Fi-shows that FLARE achieves over 98% F1-score in closed-world and up to 91% in open-world scenarios. These results reveal that CNN and RNN models leak distinguishable traffic patterns, enabling architecture fingerprinting even under realistic FL settings with hardware, software, and data heterogeneity. To our knowledge, this is the first work to fingerprint FL model architectures by sniffing encrypted wireless traffic, exposing a critical side-channel vulnerability in current FL systems.