Abstract:Backpressure (BP) routing and scheduling is a well-established resource allocation method for wireless multi-hop networks, known for its fully distributed operations and proven maximum queue stability. Recent advances in shortest path-biased BP routing (SP-BP) mitigate shortcomings such as slow startup and random walk, but exclusive link-level commodity selection still suffers from the last-packet problem and bandwidth underutilization. Moreover, classic BP routing implicitly assumes single-input-single-output (SISO) transceivers, which can lead to the same packets being scheduled on multiple outgoing links for multiple-input-multiple-output (MIMO) transceivers, causing detouring and looping in MIMO networks. In this paper, we revisit the foundational Lyapunov drift theory underlying BP routing and demonstrate that exclusive commodity selection is unnecessary, and instead propose a Max-Utility link-sharing method. Additionally, we generalize MaxWeight scheduling to MIMO networks by introducing attributed capacity hypergraphs (ACH), an extension of traditional conflict graphs for SISO networks, and by incorporating backlog reassignment into scheduling iterations to prevent redundant packet routing. Numerical evaluations show that our approach substantially mitigates the last-packet problem in state-of-the-art (SOTA) SP-BP under lightweight traffic, and slightly expands the network capacity region for heavier traffic.
Abstract:Nodes in contemporary radio networks often have multiple interfaces available for communication: WiFi, cellular, LoRa, Zigbee, etc. This motivates understanding both link and network configuration when multiple communication modalities with vastly different capabilities are available to each node. In conjunction, covertness or the hiding of radio communications is often a significant concern in both commercial and military wireless networks. We consider the optimal routing problem in wireless networks when nodes have multiple interfaces available and intend to hide the presence of the transmission from attentive and capable adversaries. We first consider the maximization of the route capacity given an end-to-end covertness constraint against a single adversary and we find a polynomial-time algorithm for optimal route selection and link configuration. We further provide optimal polynomial-time algorithms for two important extensions: (i) statistical uncertainty during optimization about the channel state information for channels from system nodes to the adversary; and, (ii) maintaining covertness against multiple adversaries. Numerical results are included to demonstrate the gains of employing heterogeneous radio resources and to compare the performance of the proposed approach versus alternatives.