Abstract:We introduce a novel deep learning framework for the automated staging of spheno-occipital synchondrosis (SOS) fusion, a critical diagnostic marker in both orthodontics and forensic anthropology. Our approach leverages a dual-model architecture wherein a teacher model, trained on manually cropped images, transfers its precise spatial understanding to a student model that operates on full, uncropped images. This knowledge distillation is facilitated by a newly formulated loss function that aligns spatial logits as well as incorporates gradient-based attention spatial mapping, ensuring that the student model internalizes the anatomically relevant features without relying on external cropping or YOLO-based segmentation. By leveraging expert-curated data and feedback at each step, our framework attains robust diagnostic accuracy, culminating in a clinically viable end-to-end pipeline. This streamlined approach obviates the need for additional pre-processing tools and accelerates deployment, thereby enhancing both the efficiency and consistency of skeletal maturation assessment in diverse clinical settings.