Abstract:Inference-time steering enables pretrained diffusion/flow models to be adapted to new tasks without retraining. A widely used approach is the ratio-of-densities method, which defines a time-indexed target path by reweighting probability-density trajectories from multiple models with positive, or in some cases, negative exponents. This construction, however, harbors a critical and previously unformalized failure mode: Marginal Path Collapse, where intermediate densities become non-normalizable even though endpoints remain valid. Collapse arises systematically when composing heterogeneous models trained on different noise schedules or datasets, including a common setting in molecular design where de-novo, conformer, and pocket-conditioned models must be combined for tasks such as flexible-pose scaffold decoration. We provide a novel and complete solution for the problem. First, we derive a simple path existence criterion that predicts exactly when collapse occurs from noise schedules and exponents alone. Second, we introduce Adaptive path Correction with Exponents (ACE), which extends Feynman-Kac steering to time-varying exponents and guarantees a valid probability path. On a synthetic 2D benchmark and on flexible-pose scaffold decoration, ACE eliminates collapse and enables high-guidance compositional generation, improving distributional and docking metrics over constant-exponent baselines and even specialized task-specific scaffold decoration models. Our work turns ratio-of-densities steering with heterogeneous experts from an unstable heuristic into a reliable tool for controllable generation.
Abstract:Caco-2 permeability serves as a critical in vitro indicator for predicting the oral absorption of drug candidates during early-stage drug discovery. To enhance the accuracy and efficiency of computational predictions, we systematically investigated the impact of eight molecular feature representation types including 2D/3D descriptors, structural fingerprints, and deep learning-based embeddings combined with automated machine learning techniques to predict Caco-2 permeability. Using two datasets of differing scale and diversity (TDC benchmark and curated OCHEM data), we assessed model performance across representations and identified PaDEL, Mordred, and RDKit descriptors as particularly effective for Caco-2 prediction. Notably, the AutoML-based model CaliciBoost achieved the best MAE performance. Furthermore, for both PaDEL and Mordred representations, the incorporation of 3D descriptors resulted in a 15.73% reduction in MAE compared to using 2D features alone, as confirmed by feature importance analysis. These findings highlight the effectiveness of AutoML approaches in ADMET modeling and offer practical guidance for feature selection in data-limited prediction tasks.