Abstract:The rise of model hubs has made it easier to access reusable model components, making model merging a practical tool for combining capabilities. Yet, this modularity also creates a \emph{governance gap}: downstream users can recompose released weights into unauthorized mixtures that bypass safety alignment or licensing terms. Because existing defenses are largely post-hoc and architecture-specific, they provide inconsistent protection across diverse architectures and release formats in practice. To close this gap, we propose \textsc{Trap}$^{2}$, an architecture-agnostic protection framework that encodes protection into the update during fine-tuning, regardless of whether they are released as adapters or full models. Instead of relying on architecture-dependent approaches, \textsc{Trap}$^{2}$ uses weight re-scaling as a simple proxy for the merging process. It keeps released weights effective in standalone use, but degrades them under re-scaling that often arises in merging, undermining unauthorized merging.




Abstract:Federated fine-tuning for Large Language Models (LLMs) has recently gained attention due to the heavy communication overhead of transmitting large model updates. Low Rank Adaptation (LoRA) has been proposed as a solution, yet its application in federated learning is complicated by discordance in aggregation. Existing methods addressing this discordance often suffer from performance degradation at low ranks in heterogeneous data settings. In response, we introduce LoRA-A2 (Low Rank Adaptation with Alternating freeze and Adaptive rank selection), which demonstrates robustness in challenging settings with low ranks and high data heterogeneity. Our experimental findings reveal that LoRA-A2 maintains performance even under extreme heterogeneity and low rank conditions, achieving up to a 99.8% reduction in uploaded parameters compared to full fine-tuning without compromising performance. This adaptive mechanism boosts robustness and communication efficiency in federated fine-tuning, enabling the practical deployment of LLMs in resource-constrained environments.