Abstract:Time series forecasting (TSF) faces challenges in modeling complex intra-channel temporal dependencies and inter-channel correlations. Although recent research has highlighted the efficiency of linear architectures in capturing global trends, these models often struggle with non-linear signals. To address this gap, we conducted a systematic receptive field analysis of convolutional neural network (CNN) TSF models. We introduce the "individual receptive field" to uncover granular structural dependencies, revealing that convolutional layers act as feature extractors that mirror channel-wise attention while exhibiting superior robustness to non-linear fluctuations. Based on these insights, we propose ACFormer, an architecture designed to reconcile the efficiency of linear projections with the non-linear feature-extraction power of convolutions. ACFormer captures fine-grained information through a shared compression module, preserves temporal locality via gated attention, and reconstructs variable-specific temporal patterns using an independent patch expansion layer. Extensive experiments on multiple benchmark datasets demonstrate that ACFormer consistently achieves state-of-the-art performance, effectively mitigating the inherent drawbacks of linear models in capturing high-frequency components.
Abstract:Despite its efficiency, there has been little research on the practical aspects required for real-world deployment of on-device AI models, such as the device's CPU utilization and thermal conditions. In this paper, through extensive experiments, we investigate two key issues that must be addressed to deploy on-device models in real-world services: (i) the selection of on-device models and the resource consumption of each model, and (ii) the capability and potential of on-device models for domain adaptation. To this end, we focus on a task of translating live-stream chat messages and manually construct LiveChatBench, a benchmark consisting of 1,000 Korean-English parallel sentence pairs. Experiments on five mobile devices demonstrate that, although serving a large and heterogeneous user base requires careful consideration of highly constrained deployment settings and model selection, the proposed approach nevertheless achieves performance comparable to commercial models such as GPT-5.1 on the well-targeted task. We expect that our findings will provide meaningful insights to the on-device AI community.