Abstract:Hybrid Optical Neural Networks (ONNs, typically consisting of an optical frontend and a digital backend) offer an energy-efficient alternative to fully digital deep networks for real-time, power-constrained systems. However, their adoption is limited by two main challenges: the accuracy gap compared to large-scale networks during training, and discrepancies between simulated and fabricated systems that further degrade accuracy. While previous work has proposed end-to-end optimizations for specific datasets (e.g., MNIST) and optical systems, these approaches typically lack generalization across tasks and hardware designs. To address these limitations, we propose a task-agnostic and hardware-agnostic pipeline that supports image classification and segmentation across diverse optical systems. To assist optical system design before training, we estimate achievable model accuracy based on user-specified constraints such as physical size and the dataset. For training, we introduce Neural Tangent Knowledge Distillation (NTKD), which aligns optical models with electronic teacher networks, thereby narrowing the accuracy gap. After fabrication, NTKD also guides fine-tuning of the digital backend to compensate for implementation errors. Experiments on multiple datasets (e.g., MNIST, CIFAR, Carvana Masking) and hardware configurations show that our pipeline consistently improves ONN performance and enables practical deployment in both pre-fabrication simulations and physical implementations.
Abstract:Artificial neural networks (ANNs) have fundamentally transformed the field of computer vision, providing unprecedented performance. However, these ANNs for image processing demand substantial computational resources, often hindering real-time operation. In this paper, we demonstrate an optical encoder that can perform convolution simultaneously in three color channels during the image capture, effectively implementing several initial convolutional layers of a ANN. Such an optical encoding results in ~24,000 times reduction in computational operations, with a state-of-the art classification accuracy (~73.2%) in free-space optical system. In addition, our analog optical encoder, trained for CIFAR-10 data, can be transferred to the ImageNet subset, High-10, without any modifications, and still exhibits moderate accuracy. Our results evidence the potential of hybrid optical/digital computer vision system in which the optical frontend can pre-process an ambient scene to reduce the energy and latency of the whole computer vision system.