Abstract:Conformal Prediction (CP) is a distribution-free framework for constructing statistically rigorous prediction sets. While popular variants such as CD-split improve CP's efficiency, they often yield prediction sets composed of multiple disconnected subintervals, which are difficult to interpret. In this paper, we propose SCD-split, which incorporates smoothing operations into the CP framework. Such smoothing operations potentially help merge the subintervals, thus leading to interpretable prediction sets. Experimental results on both synthetic and real-world datasets demonstrate that SCD-split balances the interval length and the number of disconnected subintervals. Theoretically, under specific conditions, SCD-split provably reduces the number of disconnected subintervals while maintaining comparable coverage guarantees and interval length compared with CD-split.
Abstract:Semantic segmentation is a complex task that relies heavily on large amounts of annotated image data. However, annotating such data can be time-consuming and resource-intensive, especially in the medical domain. Active Learning (AL) is a popular approach that can help to reduce this burden by iteratively selecting images for annotation to improve the model performance. In the case of video data, it is important to consider the model uncertainty and the temporal nature of the sequences when selecting images for annotation. This work proposes a novel AL strategy for surgery video segmentation, \COALSamp{}, COrrelation-aWare Active Learning. Our approach involves projecting images into a latent space that has been fine-tuned using contrastive learning and then selecting a fixed number of representative images from local clusters of video frames. We demonstrate the effectiveness of this approach on two video datasets of surgical instruments and three real-world video datasets. The datasets and code will be made publicly available upon receiving necessary approvals.