Abstract:Speech denoising is a generally adopted and impactful task, appearing in many common and everyday-life use cases. Although there are very powerful methods published, most of those are too complex for deployment in everyday and low-resources computational environments, like hand-held devices, intelligent glasses, hearing aids, etc. Knowledge distillation (KD) is a prominent way for alleviating this complexity mismatch and is based on the transferring/distilling of knowledge from a pre-trained complex model, the teacher, to another less complex one, the student. Existing KD methods for speech denoising are based on processes that potentially hamper the KD by bounding the learning of the student to the distribution, information ordering, and feature dimensionality learned by the teacher. In this paper, we present and assess a method that tries to treat this issue, by exploiting the well-known denoising-autoencoder framework, the linear inverted bottlenecks, and the properties of the cosine similarity. We use a public dataset and conduct repeated experiments with different mismatching scenarios between the teacher and the student, reporting the mean and standard deviation of the metrics of our method and another, state-of-the-art method that is used as a baseline. Our results show that with the proposed method, the student can perform better and can also retain greater mismatching conditions compared to the teacher.
Abstract:Using deep neural networks (DNNs) for encoding of microphone array (MA) signals to the Ambisonics spatial audio format can surpass certain limitations of established conventional methods, but existing DNN-based methods need to be trained separately for each MA. This paper proposes a DNN-based method for Ambisonics encoding that can generalize to arbitrary MA geometries unseen during training. The method takes as inputs the MA geometry and MA signals and uses a multi-level encoder consisting of separate paths for geometry and signal data, where geometry features inform the signal encoder at each level. The method is validated in simulated anechoic and reverberant conditions with one and two sources. The results indicate improvement over conventional encoding across the whole frequency range for dry scenes, while for reverberant scenes the improvement is frequency-dependent.
Abstract:Ambisonics encoding of microphone array signals can enable various spatial audio applications, such as virtual reality or telepresence, but it is typically designed for uniformly-spaced spherical microphone arrays. This paper proposes a method for Ambisonics encoding that uses a deep neural network (DNN) to estimate a signal transform from microphone inputs to Ambisonics signals. The approach uses a DNN consisting of a U-Net structure with a learnable preprocessing as well as a loss function consisting of mean average error, spatial correlation, and energy preservation components. The method is validated on two microphone arrays with regular and irregular shapes having four microphones, on simulated reverberant scenes with multiple sources. The results of the validation show that the proposed method can meet or exceed the performance of a conventional signal-independent Ambisonics encoder on a number of error metrics.